

RESIDENTIAL CONSTRUCTION GUIDELINES
 (Guidelines last updated October 1st, 2019)

All construction shall be in conformance with the 2015 International Residential, Building, Plumbing, Mechanical, Fuel/Gas codes, and 2017 National Electrical Code; City amendments and ordinances. The following is a general guideline of the procedures and building codes, but it is not intended to be considered as conclusive of all requirements.

Building permits shall be approved prior to any work commencing. Refer to our Plan Submission
Handoutfavailable at our officed for requirements for all documentation needed to be submitted. One (1) copy of applicable plans must be submitted through the Citizen Self: Service Portal for approval in PDF format only. Sub-con actors (electrical, plumbing, and heating/air conditioning) must be licensed and are required to permit their own work.

Various inspections are required during construction:
Inspection of the non-engineered foundations shall be made prior to the placing of concrete and after piers are set or trenches excavated, any required forms erected, and any required reinforcing steel in place and supported. Engineered foundations must be inspected by an Engineer of Record prior to pour, and then a Sealed, signed, and dated letter from said Engineer must be submitted to us prior to building final inspection.

Plumbing, Electrical, Rough inspections of plumbing, mechanical, gas, and electrical systems shall be HVAC made prior to covering or concealment before fixtures or appliances are set or installed, and prior to inspection.

Framing Inspection of framing construction shall be made after all framing, roof, firestopping, draftstopping, bracing, wall ties, and fireplace are in place and after the plumbing, mechanical, and electrical rough inspections are approved.

Energy Energy compliance is to be inspected prior to sheetrock and at final inspection.

Final Finalinspection shall be made after the permitted work is complete and prior to occupancy.

*Reference the City of Waco's Developer's Guide on the City Website for specific Bulletins and Standard Operating Procedures. (www.Waco-Texas.com)

The City of Waco's permitting system is Energov. Applicants will be using the Citizen Self Service Portal to register accounts and apply for permits. For help with questions about getting set up on our system to track your inspections, please contact our main line at 254-750-5612. All Inspections must be scheduled by 4 pm through the Citizen Self: Service Portal to get the next business dav Inspector's schedule. After 4 pm the inspection request will be pushed back an additional day.

APPLYING FOR RESIDENTIAL BUILDING PERMIT

Carportor Patio Cover

1. Have a dimensioned plot plan of the entire property showing placement of the new structure.
2. Show roof detail (Need engineering details on all components it using pre-fab components)
3. Show elevation
4. Show foundation or support

Interior Remodel

1. Provide a floor plan showing work that will be done.

Room addition; Patio enclosure

1. Have a dimensioned plot plan of the entire property
2. Show foundation plan and details of addition. If existing, note as such. Also note what type of foundation the existing structure has.
3. Show floor plan of addition and the immediate adjacent areas of the house. Label all room usages and denote all openings and all work to be done.
4. Show typical wall section
5. Roof plan and details. Show how new roof is to tie into existing.
6. Submit energy information for exterior doors, windows, and all insulation.
7. Show elevations of each side of the house where there is a change. Elevations are to show the entire existing house and the new addition as it will appear once the addition is complete.
8. A second story addition will also require a floor framing plan and details.

Detached Buildings -Over 200 s.f.

1. Have a dimensioned plot plan of entire property
2. Show foundation plan and details
3. Show elevations of each side
4. Show typical wall section
5. Show roof plan and details

Decks- 30" high and over

1. Have a dimensioned plot plan of entire property
2. Show foundation plan and details
3. Show construction and flooring details

2015 INTERNATIONAL RESIDENTIAL CODE SYNOPSIS

Code Section

R317 Protection of wood and wood based products from decay shall be provided by the use of naturally durable wood or wood that is preservative-retreated in accordance with AWPA U1.

R317 All wood framing members that rest on concrete or masonry veneer exterior foundation walls, and are less than $8 "$ from the exposed ground must be protected.

R403 Wood sole plates at all exterior walls, wood sole plates of braced wall panels at building interiors and all wood sill plates shall be anchored to the foundation with $1 / 2$ " diameter anchor bolts spaced at a maximum of 6 feet on center or approved Anchors or Anchor Straps.

R502 Spans for girders, floor joists, ceiling joists, and rafters shall be in accordance with approved span tables.

R502 Joists shall be supported laterally at the ends to prevent rotation.
R502 Notches in solid lumber joists, rafters, and beams shall not exceed one sixth of the depth of the member, or longer than one-third of the depth of the member and shall not be located in the middle one-third of the span. Notches at the ends of the member shall not exceed one-fourth the depth of the member. The tension side of members 4 inches or greater shall not be notched except at the ends of the members.

R502 The diameter of holes bored shall not exceed one-third the depth of the member. Holes shall not be closer than 2 inches to the top or bottom of the member or to any hole located in the member.

R502 Joists framing from opposite side over a bearing support shall lap a minimum of 3 inches and shall be nailed together with a minimum three 10d face nails. Joist framing into the side of a wood girder shall be supported by approved framing anchors or on ledger strips not less than 2 inches by 2 inches.

R802 When the header joist span exceeds 4 feet, the trimmer joists and the header joist shall be doubled and approved hangers shall be used for the header joist to trimmer joist connections when the header joist span exceeds 6 feet.

R408 Access shall be provided to all under-floor space and shall be a minimum of 18 inches by 24 inches. Openings through a perimeter wall shall not be less than 16 inches by 24 inches.

R408 Ventilation of crawl space area is 1 sq. ft. for each 150 sq. ft.

R503 The maximum allowable span for wood structural panels used as sub floor or roof decking is set forth in Table R503.2.1.1 (1).

R602 Studs shall be a minimum No. 3 standard or stud grade lumber. See exceptions for utility grade studs.

R602 Approved end-jointed lumber identified by a grade mark of an approved lumber grading or inspection agency may be used interchangeably with solid-sawn members of the same species and grade.

R602 Wood stud walls shall be capped with a double top plate installed to provide overlapping at corners and intersections with bearing partitions. End joints in top plates shall be offset at least 24 inches.

R602 Intermittent braced wall panel construction can be 1" x 4" wood or approved metal straps at 45 to 60 degrees, $3 / 8$ " wood structural panels, " structural fiberboard sheathing, or $\% /{ }^{\prime \prime} 1 / 2$ " gypsum board. The length of braced wall panels must be a minimum of 48 " or engineered panels.

R602 Any stud in an exterior wall or bearing partition may be cut or notched to a depth not exceeding 25 percent of its width. Studs in non-bearing partitions may be notched to a depth not to exceed 40 percent of a single stud width. Any stud be bored or drilled, provided that the diameter of the resulting hole is not more than 60 percent of the stud width, the edge of the hole is not more than $5 / 8^{\prime \prime}$ to the edge of the stud. Studs located in exterior walls or bearing partitions drilled over 40 percent and up to 60 percent shall also be doubled with not more than two successive doubled studs bored. Bored holes shall not be located in the same section as a cut or notch.

R802 Rafters shall be framed to a ridge board or to each other with a gusset plate as a tie. The ridge board shall be at least 1 inch thick and not less in depth than the cut end of the rafter. At all valleys and hips there shall be a valley or hip rafter not less than 2 inches thick and not less in depth than the cut end of the rafter.

R802 Ceiling joist and rafters shall be nailed to each other and the rafter shall be nailed to the top wall plate. Ceiling joists shall be continuous or securely joined where they meet over interior partitions and are nailed to adjacent rafter to provide a continuous tie across the building when such joists are parallel to the rafters.

R802 Where ceiling joists are not parallel to rafters, rafter ties shall be installed. Rafter ties shall be a minimum of 2 inch by 4 inch.

R802 Collar ties shall be connected in the upper third of the attic space and shall be a minimum of 1 inch by 4 inch spaced not more than 4 feet on center.

R802 Purlins shall be sized no less than the required size of the rafters that they support. Purlins shall be supported by a minimum of 2 " $\times 4$ " braces and spaced not more than 4 feet on center.

R802 Trussed rafters must be engineered and design data submitted.
R302 Fireblocking shall be provided in wood-frame construction in the following locations:

1) In concealed spaces of stud walls and partitions, including furred spaces and parallel rows of studs vertically at the ceiling and floor levels and horizontally at intervals not exceeding 10 feet.
2) At all interconnections between concealed vertical and horizontal spaces such as occur at soffits, drop ceilings, and cove ceilings.
3) In concealed spaces between stair stringers at the top and bottom of the run.
4) At openings around vents, pipes, ducts, cables, and wires at ceiling and floor level, with an approved material.

R302 Fireblocking shall consist of 2" inch nominal lumber or other approved material.
R703 Brick ties shall be not less than No. 22 gage corrugated metal and shall be spaced not more than 24 inches on center horizontally and vertically and shall support not more than 2.67 square feet of wall area.

R311 Stairways shall not be less than 36 inches in clear in clear width and have not less than 6 feet 8 inches in headroom.

R311 The maximum stair riser height shall be $73 / 4^{\prime \prime}$ inches and the minimum tread depth shall be 10 inches. A nosing not less than $3 / 4$ inch but not more than $1 \frac{1}{4}$ " inches shall be provided on stairways with solid risers. (A nosing is not required where the tread depth is a minimum of 11 inches).

R311 The width of each landing shall be less than the width of the stairway served and shall have a minimum dimension of 36 Inches measured in the direction of travel.

R311 Handrails shall be provided on at least one side of each continuous run of treads or flight with four or more risers. Handrail height shall be not less than 34 inches and not more than 38 inches measured vertically from the sloped plane adjoining the tread nosing.

R312 Required guards shall not have openings from the walking surface to the require guard height which allow passage of a sphere 4 inches in diameter.

R312 Window Fall Protection as applicable per this section.
R807 Attic access openings shall be located in a readily accessible location and not less than 22 inches by 30 inches with unobstructed headroom of 30 inches.

R806 Attic ventilation shall be not less than $1 / 150^{\text {th }}$ except that reduction to $1 / 300$ is permitted provided that a least 50 percent and not more than 80 percent of the required ventilation area is provided by ventilators located in the upper portion of the area to be ventilated and at least 3 feet above the eave or cornice vents.

R308 Safety glazing is required when a panel is within 24 inches of an exterior door and the bottom edge is less than 60 inches above the floor or walking surface.

R308 Safety glazing is required in a shower, bathtub enclosures, and all glazing over bathtub or showers where the bottom edge is within 60 inches above any standing or walking surface.

R303 Bathrooms, water closet compartments, and other similar rooms shall be provided with an operable window of not less than 3 square feet, one half of which must be openable or is vented by an approved device exhausted directly to the outside.

P2801 Water heaters having an ignition source that are installed in garages shall be elevated such that the source of ignition is not less than 18 inches above the garage floor.

R314 Smoke alarms must be installed in accordance with NFPA 72. Smoke alarms shall be installed in each sleeping room, outside each separate sleeping area in the immediate vicinity of the bedrooms, and on each additional story of the dwelling. When more than one smoke alarm is required, the alarm devices shall be interconnected in such a manner that the actuation on one alarm will activate all of the alarms.

R315 Approved carbon monoxide alarms shall be installed outside of each separate sleeping area in the immediate vicinity of the bedrooms in dwelling units within which fuel-fired appliances area installed and in dwelling units that have attached garages.

R315 Single station carbon monoxide alarms shall be listed as complying with UL.
R316 Foam Insulation - must meet thermal and / or ignition barrier requirements as applicable.
R302 Dwelling units in two-family dwellings shall be separated from each other by wall and/or floor assemblies having not less than a 1 hour fire-resistance rating.

2015 INTERNATIONAL ENERGY CONSERVATION CODE

(State Mandated Code)
R402 The building thermal envelope shall be durably sealed. It shall be caulked, gasketed, weatherstripped or otherwise sealed with an air barrier material, suitable film or solid material.

R402 Window U factor must be a maximum of 40 with a maximum SHGC of .25. Wall insulation must be a minimum or $\mathrm{R}-13$; $\mathrm{R}-38 \mathrm{~min}$. in ceilings.

R405/ Approved computer energy software, such as ResCheck, is accepted. Consult the Plan
R406 Review Department on all information pertaining to the energy code that must be submitted for review.

R401 A permanent certificate shall be posted on or in the electrical distribution panel and shall not cover or obstruct the visibility of the required electrical labels. The certificate shall list the insulation installed in or on ceiling / roof, walls, floor, and ducts outside conditioned space; U-Factors, and SHGC of fenestration. The certificate shall list the types and efficiencies of heating, cooling, and service water heating equipment. Where a gas-fired unvented room heater, electric furnance, or baseboard electric heater is installed in the residence, the
certificate shall list "gas-fired unvented room heater," "electrical furnace," or "baseboard electric heater" as appropriate.

MINIMUM FOUNDATION REQUIREMENTS FOR RESIDENTIAL CONSTRUCTION

1. The details shown are minimum foundation requirements. Designs are based on the placement of footings and beams below undisturbed soil with a bearing capacity of 1500 psE See I.R.C. for soil bearing capacities greater than 1500 psf.
2. Foundations which are to be placed on expansive or with a P.I. of 15 or greater type soils, shall be investigated and designed by a registered Engineer.
3. Foundation reinforcement steel shall be minimum grade 40 .
4. Corner bars shall be installed at all corners and at end of all interior beams.

Corner bars shall be of\# 5 rebar and shall extend at least 18 " each way.
5. Foundation concrete shall have an ultimate compressive strength of not less than 2500 lbs psi. at 28 days.
6. All new foundations which are to connect to existing foundations shall be connected to the existing foundation by doweling reinforcing steel into the existing foundation and penetrating a minimum of $5^{\prime \prime}$.
7. Width of all beams must follow table for minimum width of concrete footings.
8. All exterior foundation footings shall be placed a minimum of $12^{\prime \prime}$ below undisturbed soil.
9. Exterior beams must have a minimum of $4 \# 5$ reinforcing bars installed with 2 at top and 2 at bottom.
10. Interior beams must have a minimum of $2 \# 5$ reinforcing bars.
11. Interior beams shall be spaced a maximum of 1^{\prime} O.C. each way.
12. The foundation slab shall have a minimum reinforcing steel of \#3 bars spaced a maximum of 16 " each way and properly supported.
13. The foundation slab must have a 6 ." sand base covered with a 6 mil polyethylene vapor barrier.
14. The minimum foundation slab thickness is 4 ".
15. All piers and foundations must be inspected prior to pouring concrete. For foundation inspections, the forms must be set, steel tied and on chairs, with sand base and vapor barrier installed. All property lines shall be staked and string lines drawn.

Engineered Foundation Requirements for Residential Construction

Existing pier and beam house - If the new addition will be pier and beam, an engineered foundation plan will not be required as long as the existing foundation system has not failed. If there is failure in the existing pier and beam foundation, an engineered foundation plan will be required for the new addition. All pier and beam additions must meet City of Waco \#4 minimum foundation requirements.

Existing slab house-Same requirements as above except the new slab addition must meet City of Waco \#2 foundation requirements.

Three Conditions:

1. An engineered foundation plan will be required for any addition to an existing house if the new foundation system differs from what is currently in place, i.e. existing pier and beam to slab addition, existing slab to pier and beam addition. If there is failure in the existing foundation system an engineered foundation plan will be required.
2. New foundations for Shops, Storage Buildings, and Residential Additions - any foundation that is 500 sf or larger needs to be engineered.
3. Engineered slabs for new houses - slab grounds must be installed, inspected, and have a passed electrical UFER ground inspection prior to pouring slab. The following note was sent out by our Building Official:
"When a slab is poured without the slab ground being inspected, the person/company that pulled the building permit will be issued a ticket and documentation will have to be submitted to our office, by a design professional, that illustrates the slab grounding was done per the NEC."

3 TWO STORY BRICK

$12 \times 24 \times 24$ CONC. FOOTING © 8'-0" O.C. MAX.

NOTE:
WHEN CMU IS STACKED MORE THAN
THREE HIGH, CELLS SHALL BE FILLED
WITH CONCRETE.
TMP. EXTERIOR FOOTING
TYP. INTERIOR FOOTING
$4 \frac{\text { REPLACEMENT PIERS FOR EXISTING STRUCTURES }}{3 / 4^{\prime \prime}=1-0^{\prime \prime}}$

TABLE R502.3.1(1)
FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES
(Residential sleeping areas, live load $=30 \mathrm{psf}, \mathrm{L} / \Delta=360)^{2}$

JOIST SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$				DEAD LOAD $=20 \mathrm{psf}$			
			2×6	2×8	2×10	2×12	2×6	2×8	2×10	2×12
			Maximum floor joist spans							
			(ft. - in.)							
12	Douglas fir-larch	SS	12-6	16-6	21-0	25-7	12-6	16-6	21-0	25-7
	Douglas fir-larch	\#1	12-0	15-10	20-3	24-8	12-0	15-7	19-0	22-0
	Douglas fir-larch	\#2	11-10	15-7	19-10	23-4	11-8	14-9	18-0	20-11
	Douglas fir-larch	\#3	9-11	12-7	15-5	17-10	8-11	11-3	13-9	16-0
	Hem-fir	SS	11-10	15-7	19-10	24-2	11-10	15-7	19-10	24-2
	Hem-fir	\#1	11-7	15-3	19-5	23-7	11-7	15-3	18-9	21-9
	Hem-fir	\#2	11-0	14-6	18-6	22-6	11-0	14-4	17-6	20-4
	Hem-fir	\#3	9-8	12-4	15-0	17-5	8-8	11-0	13-5	15-7
	Southern pine	SS	12-3	16-2	20-8	25-1	12-3	16-2	20-8	25-1
	Southern pine	\#1	11-10	15-7	19-10	24-2	11-10	15-7	18-7	22-0
	Southern pine	\#2	11-3	14-11	18-1	21-4	10-9	13-8	16-2	19-1
	Southern pine	\#3	9-2	11-6	14-0	16-6	8-2	10-3	12-6	14-9
	Spruce-pine-fir	SS	11-7	15-3	19-5	23-7	11-7	15-3	19-5	23-7
	Spruce-pine-fir	\#1	11-3	14-11	19-0	23-0	11-3	14-7	17-9	20-7
	Spruce-pine-fir	\#2	11-3	14-11	19-0	23-0	11-3	14-7	17-9	20-7
	Spruce-pine-fir	\#3	9-8	12-4	15-0	17-5	8-8	11-0	13-5	15-7
16	Douglas fir-larch	SS	11-4	15-0	19-1	23-3	11-4	15-0	19-1	23-3
	Douglas fir-larch	\#1	10-11	14-5	18-5	21-4	10-8	13-6	16-5	19-1
	Douglas fir-larch	\#2	10-9	14-2	17-5	20-3	10-1	12-9	15-7	18-1
	Douglas fir-larch	\#3	8-7	10-11	13-4	15-5	7-8	9-9	11-11	13-10
	Hem-fir	SS	10-9	14-2	18-0	21-11	10-9	14-2	18-0	21-11
	Hem-fir	\#1	10-6	13-10	17-8	21-1	10-6	13-4	16-3	18-10
	Hem-fir	\#2	10-0	13-2	16-10	19-8	9-10	12-5	15-2	17-7
	Hem-fir	\#3	8-5	10-8	13-0	15-1	7-6	9-6	11-8	13-6
	Southern pine	SS	11-2	14-8	18-9	22-10	11-2	14-8	18-9	22-10
	Southern pine	\#1	10-9	14-2	18-0	21-4	10-9	13-9	16-1	19-1
	Southern pine	\#2	10-3	13-3	15-8	18-6	9-4	11-10	14-0	16-6
	Southern pine	\#3	7-11	10-0	11-1	14-4	7-1	8-11	10-10	12-10
	Spruce-pine-fir	SS	10-6	13-10	17-8	21-6	10-6	13-10	17-8	21-4
	Spruce-pine-fir	\#1	10-3	13-6	17-2	19-11	9-11	12-7	15-5	17-10
	Spruce-pine-fir	\#2	10-3	13-6	17-2	19-11	9-11	12-7	15-5	17-10
	Spruce-pine-fir	\#3	8-5	10-8	13-0	15-1	7-6	9-6	11-8	13-6

(continued)

TABLE R502.3.1(1)—continued
FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES
(Residential sleeping areas, live load $=30 \mathrm{psf}, \mathrm{L} / \Delta=360)^{\text {a }}$

JOIST SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$				DEAD LOAD $=20 \mathrm{psf}$			
			2×6	2×8	2×10	2×12	2×6	2×8	2×10	2×12
			Maximum floor joist spans							
			(ft.- in.)	(ft. - in.)						
19.2	Douglas fir-larch	SS	10-8	14-1	18-0	21-10	10-8	14-1	18-0	21-4
	Douglas fir-larch	\#1	10-4	13-7	16-9	19-6	9-8	12-4	15-0	17-5
	Douglas fir-larch	\#2	10-1	13-0	15-11	18-6	9-3	11-8	14-3	16-6
	Douglas fir-larch	\#3	7-10	10-0	12-2	14-1	7-0	8-11	10-11	12-7
	Hem-fir	SS	10-1	13-4	17-0	20-8	10-1	13-4	17-0	20-7
	Hem-fir	\#1	9-10	13-0	16-7	19-3	9-7	12-2	14-10	17-2
	Hem-fir	\#2	9-5	12-5	15-6	17-1	8-11	11-4	13-10	16-1
	Hem-fir	\#3	7-8	9-9	11-10	13-9	6-10	8-8	10-7	12-4
	Southern pine	SS	10-6	13-10	17-8	21-6	10-6	13-10	17-8	21-6
	Southern pine	\#1	10-1	13-4	16-5	19-6	9-11	12-7	14-8	17-5
	Southern pine	\#2	9-6	12-1	14-4	16-10	8-6	10-10	12-10	15-1
	Southern pine	\#3	7-3	9-1	11-0	13-1	6-5	8-2	9-10	11-8
	Spruce-pine-fir	SS	9-10	13-0	16-7	20-2	9-10	13-0	16-7	19-6
	Spruce-pine-fir	\#1	9-8	12-9	15-8	18-3	9-1	11-6	14-1	16-3
	Spruce-pine-fir	\#2	9-8	12-9	15-8	18-3	9-1	11-6	14-1	16-3
	Spruce-pine-fir	\#3	7-8	9-9	11-10	13-9	6-10	8-8	10-7	12-4
24	Douglas fir-larch	SS	9-11	13-1	16-8	20-3	9-11	13-1	16-5	19-1
	Douglas fir-larch	\#1	9-7	12-4	15-0	17-5	8-8	11-0	13-5	15-7
	Douglas fir-larch	\#2	9-3	11-8	14-3	16-6	8-3	10-5	12-9	14-9
	Douglas fir-larch	\#3	7-0	8-11	10-11	12-7	6-3	8-0	9-9	11-3
	Hem-fir	SS	9-4	12-4	15-9	19-2	9-4	12-4	15-9	18-5
	Hem-fir	\#1	9-2	12-1	14-10	17-2	8-7	10-10	13-3	15-5
	Hem-fir	\#2	8-9	11-4	13-10	16-1	8-0	10-2	12-5	14-4
	Hem-fir	\#3	6-10	8-8	10-7	12-4	6-2	7-9	9-6	11-0
	Southern pine	SS	9-9	12-10	16-5	19-11	9-9	12-10	16-5	19-8
	Southern pine	\#1	9-4	12-4	14-8	17-5	8-10	11-3	13-1	15-7
	Southern pine	\#2	8-6	10-10	12-10	15-1	7-7	9-8	11-5	13-6
	Southern pine	\#3	6-5	8-2	9-10	11-8	5-9	7-3	8-10	10-5
	Spruce-pine-fir	SS	9-2	12-1	15-5	18-9	9-2	12-1	15-0	17-5
	Spruce-pine-fir	\#1	8-11	11-6	14-1	16-3	8-1	10-3	12-7	14-7
	Spruce-pine-fir	\#2	8-11	11-6	14-1	16-3	8-1	10-3	12-7	14-7
	Spruce-pine-fir	\#3	6-10	8-8	10-7	12-4	6-2	7-9	9-6	11-0

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
Note: Check sources for availability of lumber in lengths greater than 20 feet.
a. Dead load limits for townhouses in Seismic Design Category C and all structures in Seismic Design Categories D_{0}, D_{1} and D_{2} shall be determined in accordance with Section R301.2.2.2.1.

TABLE R502.3.1(2)
FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES (Residential living areas, live load $=40 \mathrm{psf}, L / \Delta=360$) ${ }^{\text {b }}$

JOIST SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$				DEAD LOAD $=20 \mathrm{psf}$			
			2×6	2×8	2×10	2×12	2×6	2×8	2×10	2×12
			Maximum floor joist spans							
			(ft. - in.)							
12	Douglas fir-larch	SS	11-4	15-0	19-1	23-3	11-4	15-0	19-1	23-3
	Douglas fir-larch	\#1	10-11	14-5	18-5	22-0	10-11	14-2	17-4	20-1
	Douglas fir-larch	\#2	10-9	14-2	18-0	20-11	10-8	13-6	16-5	19-1
	Douglas fir-larch	\#3	8-11	11-3	13-9	16-0	8-1	10-3	12-7	14-7
	Hem-fir	SS	10-9	14-2	18-0	21-11	10-9	14-2	18-0	21-11
	Hem-fir	\#1	10-6	13-10	17-8	21-6	10-6	13-10	17-1	19-10
	Hem-fir	\#2	10-0	13-2	16-10	20-4	10-0	13-1	16-0	18-6
	Hem-fir	\#3	8-8	11-0	13-5	15-7	7-11	10-0	12-3	14-3
	Southern pine	SS	11-2	14-8	18-9	22-10	11-2	14-8	18-9	22-10
	Southern pine	\#1	10-9	14-2	18-0	21-11	10-9	14-2	16-11	20-1
	Southern pine	\#2	10-3	13-6	16-2	19-1	9-10	12-6	14-9	17-5
	Southern pine	\#3	8-2	10-3	12-6	14-9	7-5	9-5	11-5	13-6
	Spruce-pine-fir	SS	10-6	13-10	17-8	21-6	10-6	13-10	17-8	21-6
	Spruce-pine-fir	\#1	10-3	13-6	17-3	20-7	10-3	13-3	16-3	18-10
	Spruce-pine-fir	\#2	10-3	13-6	17-3	20-7	10-3	13-3	16-3	18-10
	Spruce-pine-fir	\#3	8-8	11-0	13-5	15-7	7-11	10-0	12-3	14-3
16	Douglasfir-larch	SS	10-4	13-7	17-4	21-1	10-4	13-7	17-4	21-1
	Douglas fir-larch	\#1	9-11	13-1	16-5	19-1	.9-8	12-4	15-0	17-5
	Douglas fir-larch	\#2	9-9	12-9	15-7	18-1	9-3	11-8	14-3	16-6
	Douglasfir-larch	\#3	7-8	9-9	11-11	13-10	7-0	8-11	10-11	12-7
	Hem-fir	SS	9-9	12-10	16-5	19-11	9-9	12-10	16-5	19-11
	Hem-fir	\#1	9-6	12-7	16-0	18-10	9-6	12-2	14-10	17-2
	Hem-fir	\#2	9-1	12-0	15-2	17-7	8-11	11-4	13-10	16-1
	Hem-fir	\#3	7-6	9-6	11-8	13-6	6-10	8-8	10-7	12-4
	Southern pine	SS	10-2	13-4	17-0	20-9	10-2	13-4	17-0	20-9
	Southern pine	\#1	9-9	12-10	16-1	19-1	9-9	12-7	14-8	17-5
	Southern pine	\#2	9-4	11-10	14-0	16-6	8-6	10-10	12-10	15-1
	Southern pine	\#3	7-1	8-11	10-10	12-10	6-5	8-2	9-10	11-8
	Spruce-pine-fir	SS	9-6	12-7	16-0	19-6	9-6	12-7	16-0	19-6
	Spruce-pine-fir	\#1	9-4	12-3	15-5	17-10	9-1	11-6	14-1	16-3
	Spruce-pine-fir	\#2	9-4	12-3	15-5	17-10	9-1	11-6	14-1	16-3
	Spruce-pine-fir	\#3	7-6	9-6	11-8	13-6	6-10	8-8	10-7	12-4

(continued)

JOIST SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$				DEAD LOAD $=20$ psf			
			2×6	2×8	2×10	2×12	2×6	2×8	2×10	2×12
			Maximum floor joist spans							
			(ft. - in.)							
19.2	Douglas fir-larch	SS	9-8	12-10	16-4	19-10	9-8	12-10	16-4	19-6
	Douglas fir-larch	\#1	9-4	12-4	15-0	17-5	8-10	11-3	13-8	15-11
	Douglas fir-larch	\#2	9-2	11-8	14-3	16-6	8-5	10-8	13-0	15-1
	Douglas fir-larch	\#3	7-0	8-11	10-11	12-7	6-5	8-2	9-11	11-6
	Hem-fir	SS	9-2	12-1	15-5	18-9	9-2	12-1	15-5	18-9
	Hem-fir	\#1	9-0	11-10	14-10	17-2	8-9	11-1	13-6	15-8
	Hem-fir	\#2	8-7	11-3	13-10	16-1	8-2	10-4	12-8	14-8
	Hem-fir	\#3	6-10	8-8	10-7	12-4	6-3	7-11	9-8	11-3
	Southern pine	SS	9-6	12-7	16-0	19-6	9-6	12-7	16-0	19-6
	Southern pine	\#1	9-2	12-1	14-8	17-5	9-0	11-5	13-5	15-11
	Southern pine	\#2	8-6	10-10	12-10	15-1	7-9	9-10	11-8	13-9
	Southern pine	\#3	6-5	8-2	9-10	11-8	5-11	7-5	9-0	10-8
	Spruce-pine-fir	SS	9-0	11-10	15-1	18-4	9-0	11-10	15-1	17-9
	Spruce-pine-fir	\#	8-9	11-6	14-1	16-3	8-3	10-6	12-10	14-10
	Spruce-pine-fir	\#2	8-9	11-6	14-1	16-3	8-3	10-6	12-10	14-10
	Spruce-pine-fir	\#3	6-10	8-8	10-7	12-4	6-3	7-11	9-8	11-3
"	Douglas fir-larch	SS	9-0	11-11	15-2	18-5	9-0	11-11	15-0	17-5
	Douglas fir-larch	\#1	8-8	11-0	13-5	15-7.	7-11	10-0	12-3	14-3
	Douglas fir-larch	\#2	8-3	10-5	12-9	14-9	7-6	9-6	11-8	13-6
	Douglas fir-larch	\#3	6-3	8-0	9-9	11-3	5-9	7-3	8-11	10-4
	Hem-fir	SS	8-6	11-3	14-4	17-5	8-6	11-3	14-4	16-10 ${ }^{\text {a }}$
	Hem-fir	\#1	8-4	10-10	13-3	15-5	7-10	9-11	12-1	14-0
	Hem-fir	\#2	7-11	10-2	12-5	14-4	7-4	9-3	11-4	13-1
	Hem-fir	\#3	6-2	7-9	9-6	11-0	5-7	7-1	8-8	10-1
24	Southern pine	SS	8-10	11-8	14-11	18-1	8-10	11-8	14-11	18-0
	Southern pine	\#1	8-6	11-3	13-1	15-7	8-1	10-3	12-0	14-3
	Southern pine	\#2	7-7	9-8	11-5	13-6	7-0	8-10	10-5	12-4
	Southern pine	\#3	5-9	7-3	8-10	10-5	5-3	6-8	8-1	9-6
	Spruce-pine-fir	SS	8-4	11-0	14-0	17-0	8-4	11-0	13-8	15-11
	Spruce-pine-fir	\#1	8-1	10-3	12-7	14-7	7-5	9-5	11-6	13-4
	Spruce-pine-fir	\#2	8-1	10-3	12-7	14-7	7-5	9-5	11-6	13-4
	Spruce-pine-fir	\#3	6-2	7-9	9-6	11-0	5-7	7-1	8-8	10-1

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
Note: Check sources for availability of lumber in lengths greater than 20 feet.
a. End bearing length shall be increased to 2 inches.
b. Dead load limits for townhouses in Seismic Design Category C and all structures in Seismic Design Categories D_{0}. D_{1}, and D_{2} shall be determined in accordance with Section R301.2.2.2.1.

TABLE R502.3.3(1)
CANTILEVER SPANS FOR FLOOR JOISTS SUPPORTING LIGHT-FRAME EXTERIOR BEARING WALL AND ROOF ONLYa, b, c, if. g. (Floor Live Load $\leq \mathbf{4 0}$ psf, Roof Live Load ≤ 20 psf)

MEMBER \& SPACING	MAXIMUM CANTILEVER SPAN (uplift force at backspan support in Ibs.) ${ }^{\text {die }}$											
	Ground Snow Load											
	≤ 20 psf			30 psf			50 psf			70 psf		
	Roof Width			Roof Width			Roof Width			Roof Width		
	24 ft	32 ft	40 ft	24 ft	32 ft	40 ft	24 ft	32 ft	40 ft	24 ft	32 ft	40 ft
2×8 @ 12"	$\begin{gathered} \hline 20^{\prime \prime} \\ (177) \end{gathered}$	$\begin{gathered} 15^{\prime \prime} \\ (227) \end{gathered}$	-	$\begin{gathered} 18^{\prime \prime} \\ (209) \end{gathered}$	-	-	-	-	-	-	-	-
2×10 @ $16^{\prime \prime}$	$\begin{gathered} \hline 29^{\prime \prime} \\ (228) \end{gathered}$	$\begin{gathered} \hline 21^{\prime \prime} \\ (297) \end{gathered}$	$\begin{gathered} 16^{\prime \prime} \\ (364) \end{gathered}$	$\begin{gathered} \hline 26^{\prime \prime} \\ (271) \end{gathered}$	$\begin{gathered} 18^{\prime \prime} \\ (354) \end{gathered}$	-	$\begin{gathered} \hline 20^{\prime \prime} \\ (375) \end{gathered}$	-	-	-	-	-
2×10 @ $12^{\prime \prime}$	$\begin{gathered} \hline 36^{\prime \prime} \\ (166) \end{gathered}$	$\begin{gathered} 26^{\prime \prime} \\ (219) \end{gathered}$	$\begin{gathered} \hline 20^{\prime \prime} \\ (270) \end{gathered}$	$\begin{gathered} \hline 34^{\prime \prime} \\ (198) \end{gathered}$	$\begin{gathered} \hline 22^{\prime \prime} \\ (263) \end{gathered}$	$\begin{gathered} 16^{\prime \prime} \\ (324) \end{gathered}$	$\begin{gathered} 26^{\prime \prime} \\ (277) \end{gathered}$	-	-	$\begin{gathered} \hline 19^{\prime \prime} \\ (356) \end{gathered}$	-	-
2×12 @ $16^{\prime \prime}$	-	$\begin{gathered} 32^{\prime \prime} \\ (287) \end{gathered}$	$\begin{gathered} \hline 25^{\prime \prime} \\ (356) \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ (263) \end{gathered}$	$\begin{gathered} \hline 29^{\prime \prime} \\ (345) \end{gathered}$	$\begin{gathered} \hline 21^{\prime \prime} \\ (428) \end{gathered}$	$\begin{gathered} \hline 29^{\prime \prime} \\ (367) \end{gathered}$	$\begin{gathered} \hline 20^{\prime \prime} \\ (484) \end{gathered}$	-	$\begin{gathered} \hline 23^{\prime \prime} \\ (471) \end{gathered}$	-	-
2×12 @ $12^{\prime \prime}$	-	$\begin{gathered} 42^{\prime \prime} \\ (209) \end{gathered}$	$\begin{gathered} 31^{\prime \prime} \\ (263) \end{gathered}$	-	$\begin{gathered} \hline 37^{\prime \prime} \\ (253) \end{gathered}$	$\begin{gathered} \hline 27^{\prime \prime} \\ (317) \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ (271) \end{gathered}$	$\begin{gathered} \hline 27^{\prime \prime} \\ (358) \end{gathered}$	$\begin{gathered} \hline 17^{\prime \prime} \\ (447) \end{gathered}$	$\begin{gathered} 31^{\prime \prime} \\ (348) \end{gathered}$	$\begin{gathered} 19^{\prime \prime} \\ (462) \end{gathered}$	-
2×12 @ 8 "	-	$\begin{gathered} \hline 48^{\prime \prime} \\ (136) \end{gathered}$	$\begin{gathered} \hline 45^{\prime \prime} \\ (169) \end{gathered}$	-	$\begin{gathered} \hline 48^{\prime \prime} \\ (164) \end{gathered}$	$\begin{gathered} \hline 38^{\prime \prime} \\ (206) \end{gathered}$	-	$\begin{gathered} 40^{\prime \prime} \\ (233) \end{gathered}$	$\begin{gathered} \hline 26^{\prime \prime} \\ (294) \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ (230) \end{gathered}$	$\begin{gathered} \hline 29^{\prime \prime} \\ (304) \end{gathered}$	$\begin{gathered} 18^{\prime \prime} \\ (379) \end{gathered}$

For SI: $1 \mathrm{nch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. Tabulated values are for clear-span roof supported solely by exterior bearing walls.
b. Spans are based on No. 2 Grade lumber of Douglas fir-larch, hem-fir, and spruce-pine-fir for repetitive (three or more) members. No. 1 or better shall be used for southern pine.
c. Ratio of backspan to cantilever span shall be not less than 3:1.
d. Connections capable of resisting the indicated uplift force shall be provided at the backspan support.
e. Uplift force is for a backspan to cantilever span ratio of $3: 1$. Tabulated uplift values are permitted to be reduced by multiplying by a factor equal to 3 divided by the actual backspan ratio provided (3/backspan ratio).
f. See Section R301.2.2.2.5, Item 1, for additional limitations on cantilevered floor joists for detached one- and two-family dwellings in Seismic Design Category $\mathrm{D}_{0}, \mathrm{D}_{1}$, or D_{2} and townhouses in Seismic Design Category $\mathrm{C}, \mathrm{D}_{0}, \mathrm{D}_{1}$ or D_{2}.
g. A full-depth rim joist shall be provided at the unsupported end of the cantilever joists. Solid blocking shall be provided at the supported end. Where the cantilever length is 24 inches or less and the building is assigned to Seismic Design Category A, B or C, solid blocking at the support for the cantilever shall not be required.
h. Linear interpolation shall be permitted for building widths and ground snow loads other than shown.

TABLE R502.3.3(2)
CANTILEVER SPANS FOR FLOOR JOISTS SUPPORTING EXTERIOR BALCONYa, b, e, f

MEMBER SIZE	SPACING	MAXIMUM CANTILEVER SPAN (uplift force at backspan support in lbs.) ${ }^{\text {c, d }}$		
		Ground Snow Load		
		$\leq 30 \mathrm{psf}$	50 psf	70 psf
2×8	$12^{\prime \prime}$	42" (139)	39' (156)	34' (165)
2×8	$16^{\prime \prime}$	36" (151)	34" (171)	29" (180)
2×10	$12^{\prime \prime}$	61" (164)	57' (189)	49" (201)
2×10	$16^{\prime \prime}$	53" (180)	49" (208)	42" (220)
2×10	$24^{\prime \prime}$	43" (212)	40" (241)	34" (255)
2×12	$16^{\prime \prime}$	72" (228)	67' (260)	57" (268)
2×12	$24^{\prime \prime}$	58" (279)	54" (319)	47" (330)

For SI: $1 \mathrm{nch}=25.4 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. Spans are based on No. 2 Grade lumber of Douglas fir-larch, hem-fir. and spruce-pine-fir for repetitive (three or more) members. No. 1 or better shall be used for southern pine.
b. Ratio of backspan to cantilever span shall be not less than $2: 1$.
c. Connections capable of resisting the indicated uplift force shall be provided at the backspan support.
d. Uplift force is for a backspan to cantilever span ratio of $2: 1$. Tabulated uplift values are permitted to be reduced by multiplying by a factor equal to 2 divided by the actual backspan ratio provided (2/backspan ratio).
e. A full-depth rim joist shall be provided at the unsupported end of the cantilever joists. Solid blocking shall be provided at the supported end. Where the cantilever length is 24 inches or less and the building is assigned to Seismic Design Category A, B or C, solid blocking at the support for the cantilever shall not be required.
f. Linear interpolation shall be permitted for ground snow loads other than shown.

TABLE R602.7(1)
GIRDER SPANS ${ }^{a}$ AND HEADER SPANS ${ }^{3}$ FOR EXTERIOR BEARING WALLS
(Maximum spans for Douglas fir-larch, hem-fir, southern pine and spruce-pine-fir ${ }^{\text {b }}$ and required number of jack studs)

GIRDERS ANDHEADERSSUPPORTING	SIZE	GROUND SNOW LOAD (psf)																	
		30						50						70					
		Building width ${ }^{\text {c }}$ (feet)																	
		20		28		36		20		28		36		20		28		36	
		Span	NJd	Span	$\mathrm{NJ}^{\text {d }}$	Span	N ${ }^{\text {d }}$	Span	N ${ }^{\text {d }}$	Span	$\mathrm{NJ}^{\text {d }}$	Span	NJ ${ }^{\text {d }}$	Span	$\mathrm{NJ}^{\text {d }}$	Span	$\mathrm{NJ}^{\text {d }}$	Span	$\mathrm{NJ}^{\text {d }}$
Roof and ceiling	1-2 $\times 8$	4-6	1	3-10	1	3-5	1	3-9	1	3-2	1	2-10	2	-	-	-	-	-	-
	$1-2 \times 10$	5-8	1	4-11	1	4-4	1	4-9	1	4-1	1	3-7	2	-	-	-	-	-	-
	1-2 $\times 12$	6-11	1	5-11	2	5-3	2	5-9	2	4-8	2	3-8	2	-	-	-	-	-	-
	$2-2 \times 4$	3-6	1	3-2	1	2-10	1	3-2	1	2-9	1	2-6	1	2-10	1	2-6	1	2-3	1
	$2-2 \times 6$	5-5	1	4-8	1	4-2	1	4-8	1	4-1	1	3-8	2	4-2	1	3-8	2	3-3	2
	$2-2 \times 8$	6-10	1	5-11	2	5-4	2	5-11	2	5-2	2	4-7	2	5-4	2	4-7	2	4-1	2
	$2-2 \times 10$	8-5	2	7-3	2	6-6	2	7-3	2	6-3	2	5-7	2	6-6	2	5-7	2	5-0	2
	$2-2 \times 12$	9-9	2	8-5	2	7-6	2	8-5	2	7-3	2	6-6	2	7-6	2	6-6	2	5-10	3
	$3-2 \times 8$	8-4	1	7-5	1	6-8	1	7-5	1	6-5	2	5-9	2	6-8	1	5-9	2	5-2	2
	$3-2 \times 10$	10-6	1	9-1	2	8-2	2	9-1	2	7-10	2	7-0	2	8-2	2	7-0	2	6-4	2
	$3-2 \times 12$	12-2	2	10-7	2	9-5	2	10-7	2	9-2	2	8 -2	2	9-5	2	8-2	2	7-4	2
	$4-2 \times 8$	9-2	1	8-4	1	7-8	1	8-4	1	7-5	1	6-8	1	7-8	1	6-8	1	5-11	2
	$4-2 \times 10$	11-8	1	10-6	1	9-5	2	10-6	1	9-1	2	8-2	2	9-5	2	8-2	2	7-3	2
	$4-2 \times 12$	14-1	1	12-2	2	10-11	2	12-2	2	10-7	2	9-5	2	10-11	2	9-5	2	8-5	2
Roof, ceiling and one centerbearing floor	$1-2 \times 8$	3-11	1	3-5	1	3-0	1	3-7	1	3-0	2	2-8	2	-	-	-	-	-	-
	$1-2 \times 10$	5-0	2	4-4	2	3-10	2	4-6	2	3-11	2	3-4	2	-	-	-	-	-	-
	1-2 $\times 12$	5-10	2	4-9	2	4-2	2	5-5	2	4-2	2	3-4	2	-	-	-	-	-	-
	$2-2 \times 4$	3-1	1	2-9	1	2-5	1	2-9	1	2-5	1	2-2	1	2-7	1	2-3	1	2-0	1
	$2-2 \times 6$	4-6	1	4-0	1	3-7	2	4-1	1	3-7	2	3-3	2	3-9	2	3-3	2	2-11	2
	$2-2 \times 8$	5-9	2	5-0	2	4-6	2	5-2	2	4-6	2	4-1	2	4-9	2	4-2	2	3-9	2
	$2-2 \times 10$	7-0	2	6-2	2	5-6	2	6-4	2	5-6	2	5-0	2	5-9	2	5-1	2	4-7	3
	$2-2 \times 12$	8-1	2	7-1	2	6-5	2	7-4	2	6-5	2	5-9	3	6-8	2	5-10	3	5-3	3
	$3-2 \times 8$	7-2	1	6-3	2	5-8	2	6-5	2	5-8	2	5-1	2	5-11	2	5-2	2	4-8	2
	$3-2 \times 10$	8-9	2	7-8	2	6-11	2	7-11	2	6-11	2	6-3	2	7-3	2	6-4	2	5-8	2
	$3-2 \times 12$	10-2	2	8-11	2	8-0	2	9-2	2	8-0	2	7-3	2	8-5	2	7-4	2	6-7	2
	$4-2 \times 8$	8-1	1	7-3	1	6-7	1	7-5	1	6-6	1	5-11	2	6-10	1	6-0	2	5-5	2
	$4-2 \times 10$	10-1	1	8-10	2	8 -0	2	9-1	2	8 -0	2	7-2	2	8-4	2	7-4	2	6-7	2
	$4-2 \times 12$	11-9	2	10-3	2	9-3	2	10-7	2	9-3	2	8-4	2	9-8	2	8-6	2	7-7	2
Roof, ceiling and one clear span floor	1-2 $\times 8$	3-6	1	3-0	1	2-8	1	3-5	1	2-11	1	2-7	2	-	-	-	-	-	-
	1-2 $\times 10$	4-6	1	3-10	1	3-3	1	4-4	1	3-9	1	3-1	2	-	-	-	-	-	-
	1-2 $\times 12$	5-6	1	4-2	2	3-3	2	5-4	2	3-11	2	3-1	2	-	-	-	-	-	-
	$2-2 \times 4$	2-8	1	2-4	1	2-1	1	2-7	1	2-3	1	2-0	1	2-5	1	2-1	1	1-10	1
	2-2 2×6	3-11	1	3-5	2	3-0	2	3-10	2	3-4	2	3-0	2	3-6	2	3-1	2	2-9	2
	$2-2 \times 8$	5-0	2	4-4	2	3-10	2	4-10	2	4-2	2	3-9	2	4-6	2	3-11	2	3-6	2
	2.2×10	6-1	2	5-3	2	4-8	2	5-11	2	5-1	2	4-7	3	5-6	2	4-9	2	4-3	3
	2.2×12	7-1	2	6-1	3	5-5	3	6-10	2	5-11	3	5-4	3	6-4	2	5-6	3	5-0	3
	3-2×8	6-3	2	5-5	2	4-10	2	6-1	2	5-3	2	4-8	2	5-7	2	4-11	2	4-5	2
	$3-2 \times 10$	7-7	2	6-7	2	5-11	2	7-5	2	6-5	2	5-9	2	6-10	2	$6-0$	2	5-4	2
	$3-2 \times 12$	8-10	2	7-8	2	6-10	2	8.7	2	7-5	2	6-8	2	7-11	2	6-11	2	6-3	2
	$4-2 \times 8$	7-2	1	6-3	2	5-7	2	7-0	1	6-1	2	5-5	2	6-6	1	5-8	2	5-1	2
	$4-2 \times 10$	8-9	2	7-7	2	6-10	2	8-7	2	7-5	2	6-7	2	7-11	2	6-11	2	6-2	2
	$4-2 \times 12$	10-2	2	8-10	2	7-11	2	9-11	2	8-7	2	7-8	2	9-2	2	8.0	2	7-2	2

(continued)

WALL CONSTRUCTION

TABLE R602.7(1)—continued ${ }^{\prime}$
GIRDER SPANS ${ }^{a}$ AND HEADER SPANS ${ }^{\text {a }}$ FOR EXTERIOR BEARING WALLS
(Maximum spans for Douglas fir-larch, hem-fir, southern pine and spruce-pine-fir ${ }^{\text {b }}$ and required number of jack studs)

GIRDERS AND HEADERS SUPPORTING	SIZE	GROUND SNOW LOAD (psf) ${ }^{\text {e }}$																	
		30						50						70					
		Building width ${ }^{\text {c }}$ (feet)																	
		20		28		36		20		28		36		20		28		36	
		Span	$\mathrm{NJ}^{\text {d }}$																
Roof, ceiling and two centerbearing floors	$2-2 \times 4$	2-7	1	2-3	1	2-0	1	2-6	1	2-2	1	1-11	1	2-4	1	2-0	1	1-9	1
	$2-2 \times 6$	3-9	2	3-3	2	2-11	2	3-8	2	3-2	2	2-10	2	3-5	2	3-0	2	2-8	2
	$2-2 \times 8$	4-9	2	4-2	2	3-9	2	4-7	2	4-0	2	3-8	2	4-4	2	3-9	2	3-5	2
	$2-2 \times 10$	5-9	2	5-1	2	4-7	3	5-8	2	4-11	2	4-5	3	5-3	2	4-7	3	4-2	3
	$2-2 \times 12$	6-8	2	5-10	3	5-3	3	6-6	2	5-9	3	5-2	3	6-1	. 3	5-4	3	4-10	3
	$3-2 \times 8$	5-11	2	5-2	2	4-8	2	5-9	2	5-1	2	4-7	2	5-5	2	4-9	2	4-3	2
	$3-2 \times 10$	7-3	2	6-4	2	5-8	2	7-1	2	6-2	2	5-7	2	6-7	2	5-9	2	5-3	2
	$3-2 \times 12$	8-5	2	7-4	2	6-7	2	8-2	2	7-2	2	6-5	3	7-8	2	6-9	2	6-1	3
	$4-2 \times 8$	6-10	1	6-0	2	5-5	2	6-8	1	5-10	2	5-3	2	6-3	2	5-6	2	4-11	2
	$4-2 \times 10$	8-4	2	7-4	2	6-7	2	8-2	2	7-2	2	6-5	2	7-7	2	6-8	2	6-0	2
	$4-2 \times 12$	9-8	2	8-6	2	7-8	2	9-5	2	8-3	2	7-5	2	8-10	2	7-9	2	7-0	2
Roof, ceiling, and two clearspan floors	$2-2 \times 4$	2-1	1	1-8	1	1-6	2	2-0	1	1-8	1	1-5	2	$2-0$	1	1-8	1	1-5	2
	$2-2 \times 6$	3-1	2	2-8	2	2-4	2	3-0	2	2-7	2	2-3	2	2-11	2	2-7	2	2-3	2
	$2-2 \times 8$	3-10	2	3-4	2	3-0	3	3-10	2	3-4	2	2-11	3	3-9	2	3-3	2	2-11	3
	2.2×10	4-9	2	4-1	3	3-8	3	4-8	2	4-0	3	$3-7$	3	4-7	3	4-0	3	3-6	3
	$2-2 \times 12$	5-6	3	4-9	3	4-3	3	5.5	3	4-8	3	4-2	3	5-4	3	4-7	3	4-1	4
	$3-2 \times 8$	4-10	2	4-2	2	3-9	2	4-9	2	4-1	2	3-8	2	4-8	2	4-1	2	3-8	2
	$3-2 \times 10$	5-11	2	5-1	2	4-7	3	5-10	2	5-0	2	4-6	3	5-9	2	4-11	2	4-5	3
	$3-2 \times 12$	6-10	2	5-11	3	5-4	3	6-9	2	5-10	3	5-3	3	6-8	2	5-9	3	5-2	3
	$4-2 \times 8$	5-7	2	4-10	2	4-4	2	5-6	2	4-9	2	4-3	2	5-5	2	4-8	2	4-2	2
	$4-2 \times 10$	6-10	2	5-11	2	5-3	2	6-9	2	5-10	2	5-2	2	6-7	2	5-9	2	5-1	2
	$4-2 \times 12$	7-11	2	6-10	2	6-2	3	7-9	2	6-9	2	6-0	3	7-8	2	6-8	2	5-11	3

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$
a. Spans are given in feet and inches
b. Tabulated values assume \#2 grade lumber.
c. Building width is measured perpendicular to the ridge. For widths between those shown, spans are permitted to be interpolated.
d. $\mathrm{NJ}=$ Number of jack studs required to support each end. Where the number of required jack studs equals one, the header is permitted to be supported by an approved framing anchor attached to the full-height wall stud and to the header.
e. Use 30 psf ground snow load for cases in which ground snow load is less than 30 psf and the roof live load is equal to or less than 20 psf.

TABLE R602.7(2):
GIRDER SPANS ${ }^{3}$ AND HEADER SPANS ${ }^{\text {a }}$ FOR INTERIOR BEARING WALLS
(Maximum spans for Douglas fir-larch, hem-fir, southern pine and spruce-pine-fir ${ }^{\mathbf{b}}$ and required number of jack studs)

HEADERS AND GIRDERS SUPPORTING	SIZE	BUILDING Width ${ }^{\text {c }}$ (feet)					
		20		28		36	
		Span	$\mathrm{NJ}{ }^{\text {d }}$	Span	$\mathrm{NJ}{ }^{\text {d }}$	Span	$\mathrm{NJ}{ }^{\text {d }}$
One floor only	$2-2 \times 4$	3-1	1	2-8	1	2-5	1
	$2-2 \times 6$	4-6	1	3-11	1	3-6	1
	$2-2 \times 8$	5-9	1	5-0	2	4-5	2
	$2-2 \times 10$	7-0	2	6-1	2	5-5	2
	$2-2 \times 12$	8-1	2	7-0	2	6-3	2
	$3-2 \times 8$	7-2	1	6-3	1	5-7	2
	$3-2 \times 10$	8-9	1	7-7	2	6-9	2
	$3-2 \times 12$	10-2	2	8-10	2	7-10	2
	$4-2 \times 8$	9-0	1	7-8	1	6-9	1
	$4-2 \times 10$	10-1	1	8-9	1	7-10	2
	$4-2 \times 12$	11-9	1	10-2	2	9-1	2
Two floors	$2-2 \times 4$	2-2	1	1-10	1	1-7	1
	$2-2 \times 6$	3-2	2	2-9	2	2-5	2
	$2-2 \times 8$	4-1	2	3-6	2	3-2	2
	$2-2 \times 10$	4-11	2	4-3	2	3-10	3
	2.2×12	5-9	2	5-0	3	4-5	3
	$3-2 \times 8$	5-1	2	4-5	2	3-11	2
	$3-2 \times 10$	6-2	2	5-4	2	4-10	2
	$3-2 \times 12$	7-2	2	6-3	2	5-7	3
	$4-2 \times 8$	6-1	1	5-3	2	4-8	2
	$4-2 \times 10$	7-2	2	6-2	2	5-6	2
	$4-2 \times 12$	8-4	2	7-2	2	6-5	2

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
a. Spans are given in feet and inches.
b. Tabulated values assume \#2 grade lumber.
c. Building width is measured perpendicular to the ridge. For widths between those shown, spans are permitted to be interpolated.
d. $\mathrm{NJ}=$ Number of jack studs required to support each end. Where the number of required jack studs equals one, the header is permitted to be supported by an approved framing anchor attached to the full-height wall stud and to the header.

TABLE R602.7(3)
GIRDER AND HEADER SPANS ${ }^{a}$ FOR OPEN PORCHES
(Maximum span for Douglas fir-larch, hem-fir, southern pine and spruce-pine-firb)

SIZE	SUPPORTNG ROOF						SUPPORTING FLOOR	
	GROUND SNOW LOAD (psf)							
	30		50		70			
	DEPTH OF PORCH ${ }^{\text {c }}$ (feet)							
	8	14	8	14	8	14	8	14
$2-2 \times 6$	7-6	5-8	6-2	4-8	5-4	4-0	6-4	4-9
$2-2 \times 8$	10-1	7-7	8-3	6-2	7-1	5-4	8-5	6-4
$2-2 \times 10$	12-4	9-4	10-1	7-7	8-9	6-7	10-4	7-9
$2-2 \times 12$	14-4	10-10	11-8	8-10	10-1	7-8	11-11	9-0

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$
a. Spans are given in feet and inches.
b. Tabulated values assume \#2 grade lumber, wet service and incising for refractory species. Use 30 psf ground snow load for cases in which ground snow load is less than 30 psf and the roof live load is equal to or less than 20 psf .
c. Porch depth is measured horizontally from building face to centerline of the header. For depths between those shown, spans are permitted to be interpolated.

R802.3.3 Blocking. Blocking shall be a minimum of utility grade lumber.

R802.4 Allowable ceiling joist spans. Spans for ceiling joists shall be in accordance with Tables R802.4(1) and R802.4(2). For other grades and species and for other loading conditions, refer to the AWC STJR
R802.5 Allowable rafter spans. Spans for rafters shall be in accordance with Tables R802.5.1(1) through R802.5.1(8). For other grades and species and for other loading conditions, refer to the AWC STJR. The span of each rafter shall be measured along the horizontal projection of the rafter.

R802.5.1 Purlins. Installation of purlins to reduce the span of rafters is permitted as shown in Figure R802.5.1. Purlins shall be sized not less than the required size of the rafters that they support. Purlins shall be continuous and shall be supported by 2 -inch by 4 -inch (51 mm by 102 mm) braces installed to bearing walls at a slope not less than 45 degrees (0.79 rad) from the horizontal. The braces shall be spaced not more than 4 feet (1219 mm) on center and the unbraced length of braces shall not exceed 8 feet (2438 mm).

TABLE R802.4(1) CEILING JOIST SPANS FOR COMMON LUMBER SPECIES (Uninhabitable attics without storage, live load =10 psf, L/ $\Delta=240$)						
CEILING JOIST SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=5 \mathrm{psf}$			
			2×4	2×6	2×8	2×10
			Maximum ceiling joist spans			
			(feet - inches)	(feet - inches)	(feet - inches)	(feet - inches)
12	Douglas fir-larch SS		13-2	$20-8$		Note a
	Douglas fir-larch	\#1	12-8	19-11	Note a	Note a
	Douglas fir-larch	\#2	12-5	19-6	25-8	Note a
	Douglas fir-larch	\#3	11-1	16-3	20-7	25-2
	Hem-fir	SS	12-5	19-6	25-8	Note a
	Hem-fir	\#1	12-2	19-1	25-2	Note a
	Hem-fir	\#2	11-7	18-2	24-0	Note a
	Hem-fir	\#3	10-10	15-10	20-1	24-6
	Southern pine	SS	12-11	20-3	Note a	Note ${ }^{\text {a }}$
	Southern pine	\#1	12-5	$19-6$	25-8	Note a
	Southern pine	\#2	11-10	18-8	24-7	Note a
	Southern pine	\#3	10-1	14-11	18-9	22-9
	Spruce-pine-fir	SS	12-2	19-1	25-2	Note a
	Spruce-pine-fir	\#1	11-10	18-8	24-7	Note a
	Spruce-pine-fir	\#2	11-10	18-8	24-7	Note a
	Spruce-pine-fir	\#3	10-10	15-10	20-1	24-6
	Douglas fir-larch	SS	11-11	18-9	24-8	Note a
	Douglas fir-larch	\#1	11-6	18-1	23-10	Note a
	Douglas fir-larch	\#2	11-3	17-8	23-4	Note a
	Douglas fir-larch	\#3	9-7	14-1	17-10	21-9
	Hem-fir	SS	11-3	17-8	23-4	Note a
	Hem-fir	\#1	11-0	17-4	22-10	Note a
	Hem-fir	\#2	10-6	16-6	21-9	Note a
16	Hem-fir	\#3	9-5	13-9	17-5	21-3
16	Southern pine	SS	11-9	18-5	24-3	Note a
	Southern pine	\#1	11-3	17-8	23-10	Note a
	Southern pine	\#2	10-9	16-11	21-7	25-7
	Southern pine	\#3	8-9	12-11	16-3	19-9
	Spruce-pine-fir	SS	11-0	17-4	22-10	Note a
	Spruce-pine-fir	\#1	10-9	16-11	22-4	Note a
	Spruce-pine-fir	\#2	10-9	16-11	22-4	Note a
	Spruce-pine-fir	\#3	9-5	13-9	17-5	21-3

(continued)

TABLE R802.4(1)-continued
CEILING JOIST SPANS FOR COMMON LUMBER SPECIES
(Uninhabitable attics without storage, live load $=10 \mathrm{psf}, \mathrm{L} / \Delta=240$)

CEILING JOISTSPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=5 \mathrm{psf}$			
			2×4	2×6	2×8	2×10
			Maximum ceiling joist spans			
			(feet - inches)	(feet - inches)	(feet - inches)	(feet - inches)
19.2	Douglas fir-larch	SS	11-3	17-8	23-3	Note a
	Douglas fir-larch	\#1	10-10	17-0	22-5	Note a
	Douglas fir-larch	\#2	10-7	16-8	21-4	26-0
	Douglas fir-larch	\#3	8-9	12-10	16-3	19-10
	Hem-fir	SS	10-7	16-8	21-11	Note a
	Hem-fir	\#1	10-4	16-4	21-6	Note a
	Hem-fir	\#2	9-11	15-7	20-6	25-3
	Hem-fir	\#3	8-7	12-6	15-10	19-5
	Southern -pine	SS	11-0	17-4	22-10	Note a
	Southern pine	\#1	10-7	16-8	22-0	Note a
	Southern pine	\#2	10-2	15-7	19-8	23-5
	Southern pine	\#3	8-0	11-9	14-10	18-0
	Spruce-pine-fir	SS	10-4	16-4	21-6	Note a
	Spruce-pine-fir	\#1	10-2	15-11	21-0	25-8
	Spruce-pine-fir	\#2	10-2	15-11	21-0	25-8
	Spruce-pine-fir	\#3	8-7	12-6	15-10	19-5
24	Douglas fir-larch SS		10-5	16-4	21-7	Note a
	Douglas fir-larch	\#1	10-0	15-9	20-1	24-6
	Douglas fir-larch	\#2	9-10	15-0	19-1	23-3
	Douglas fir-larch	\#3	7-10	11-6	14-7	17-9
	Hem-fir	SS	9-10	15-6	20-5	Note a
	Hem-fir	\#1	9-8	15-2	19-10	24-3
	Hem-fir	\#2	9-2	14-5	18-6	22-7
	Hem-fir	\#3	7-8	11-2	14-2	17-4
	Southern pine	SS	10-3	16-1	21-2	Note a
	Southern pine	\#1	9-10	15-6	20-5	24-0
	Southern pine	\#2	9-3	13-11	17-7	20-11
	Southern pine	\#3	7-2	10-6	13-3	16-1
	Spruce-pine-fir	SS	9-8	15-2	19-11	25-5
	Spruce-pine-fir	\#1	9-5	14-9	18-9	22-11
	Spruce-pine-fir	\#2	9-5	14-9	18-9	22-11
	Spruce-pine-fir	\#3	7-8	11-2	14-2	17-4

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. Span exceeds 26 feet in length.

TABLE R802.4(2)
CEILING JOIST SPANS FOR COMMON LUMBER SPECIES
(Uninhabitable attics with limited storage, live load =20 psf, L/

CEILING JOIST SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$			
			2×4	2×6	2×8	2×10
			Maximum ceiling joist spans			
			(feet - inches)	(feet - inches)	(feet - inches)	(feet - inches)
12	Douglas fir-larch	SS	10-5	16-4	21-7	Note a
	Douglas fir-larch		10-0	15-9	20-1	24-6
	Douglas fir-larch	\#2	9-10	15-0	19-1	23-3
	Douglas fir-larch	\#3	7-10	11-6	14-7	17-9
	Hem-fir	SS	9-10	15-6	20-5	Note a
	Hem-fir	\#1	9-8	15-2	19-10	24-3
	Hem-fir	\#2	9-2	14-5	18-6	22-7
	Hem-fir	\#3	7-8	11-2	14-2	17-4
	Southern pine	SS	10-3	16-1	21-2	Note a
	Southern pine	\#1	9-10	15-6	20-5	24-0
	Southern pine	\#2	9-3	13-11	17-7	20-11
	Southern pine	\#3	7-2	10-6	13-3	16-1
	Spruce-pine-fir	SS	9-8	15-2	19-11	25-5
	Spruce-pine-fir	\#1	9-5	14-9	18-9	22-11
	Spruce-pine-fir	\#2	9-5	14-9	18-9	22-11
	Spruce-pine-fir	\#3	7-8	11-2	14-2	17-4
-	Douglas fir-larch	SS	9-6	14-11	19-7	25-0
	Douglas fir-larch	\#1	9-1	13-9	17-5	21-3
	Douglas fir-larch	\#2	8-11	13-0	16-6	20-2
	Douglas fir-larch	\#3	6-10	9-11	12-7	15-5
	Hem-fir	SS	8-11	14-1	18-6	23-8
	Hem-fir	\#1	8-9	13-7	17-2	21-0
	Hem-fir	\#2	8-4	12-8	16-0	19-7
16	Hem-fir	\#3	6-8	9-8	12-4	15-0
	Southern pine	SS	9-4	14-7	19-3	24-7
	Southern pine	\#1	8-11	14-0	17-9	20-9
	Southern pine	\#2	8-0	12-0	15-3	18-1
	Southern pine	\#3	6-2	9-2	11-6	14-0
	Spruce-pine-fir	SS	8-9	13-9	18-1	23-1
	Spruce-pine-fir	\#1	8-7	12-10	16-3	19-10
	Spruce-pine-fir	\#2	8-7	12-10	16-3	19-10
	Spruce-pine-fir	\#3	6-8	9-8	12-4	15-0

TABLE R802.4(2)-continued
CEILING JOIST SPANS FOR COMMON LUMBER SPECIES
(Uninhabitable attics with limited storage, live load $=20 \mathrm{psf}, \mathrm{L} / \Delta=240$)

CEILING JOIST SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$			
			2×4	2×6	2×8	2×10
			Maximum ceiling joist spans			
			(feet - inches)	(feet - inches)	(feet - inches)	(feet - inches)
19.2	Douglas fir-larch	SS	8-11	14-0	18-5	23-7
	Douglas fir-larch	\#1	8-7	12-6	15-10	19-5
	Douglas fir-larch	\#2	8-2	11-11	15-1	18-5
	Douglas fir-larch	\#3	6-2	9-1	11-6	14-1
	Hem-fir	SS	8-5	13-3	17-5	22-3
	Hem-fir	\#1	8-3	12-4	15-8	19-2
	Hem-fir	\#2	7-10	11-7	14-8	17-10
	Hem-fir	\#3	6-1	8-10	11-3	13-8
	Southern pine	SS	8-9	13-9	18-2	23-1
	Southern pine	\#1	8-5	12-9	16-2	18-11
	Southern pine	\#2	7-4	11-0	13-11	16-6
	Southern pine	\#3	5-8	8-4	10-6	12-9
	Spruce-pine-fir	SS	8-3	12-11	17-1	21-8
	Spruce-pine-fir	\#1	8-0	11-9	14-10	18-2
	Spruce-pine-fir	\#2	8-0	11-9	14-10	18-2
	Spruce-pine-fir	\#3	6-1	8-10	11-3	13-8
24	Douglas fir-larch	SS	8-3	13-0	17-2	21-3
	Douglas fir-larch	\#1	7-8	11-2	1.4-2	17-4
	Douglas fir-larch	\#2	7-3	10-8	13-6	16-5
	Douglas fir-larch	\#3	5-7	8-1	10-3	12-7
	Hem-fir	SS	7-10	12-3	16-2	20-6
	Hem-fir	\#1	7-7	11-1	14-0	17-1
	Hem-fir	\#2	7-1	10-4	13-1	16-0
	Hem-fir	\#3	5-5	7-11	10-0	12-3
	Southern pine	SS	8-1	12-9	16-10	21-6
	Southern pine	\#1	7-8	11-5	14-6	16-11
	Southern pine	\#2	6-7	9-10	12-6	14-9
	Southern pine	\#3	5-1	7-5	9-5	11-5
	Spruce-pine-fir	SS	7-8	12-0	15-10	19-5
	Spruce-pine-fir	\#1	7-2	10-6	13-3	16-3
	Spruce-pine-fir	\#2	7-2	10-6	13-3	16-3
	Spruce-pine-fir	\#3	5-5	7-11	10-0	12-3

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. Span exceeds 26 feet in length.

TABLE R802.5.1 1 (
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Roof live load $=20 \mathrm{psf}$, ceiling not attached to rafters, $L / \Delta=180$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feet inches)	$\begin{gathered} \text { (feet - } \\ \text { inches) } \end{gathered}$	(feet inches)	(feetinches)						
12	Douglas fir-larch	SS	11-6	18-0	23-9	Note b	Note b	11-6	18-0	23-9	Note b	Note b
	Douglas fir-larch	\#1	11-1	17-4	22-5	Note b	Note b	10-6	15-4	19-5	23-9	Note b
	Douglas fir-larch	\#2	10-10	16-10	21-4	26-0	Note b	10-0	14-7	18-5	22-6	26-0
	Douglas fir-larch	\#3	8-9	12-10	16-3	19-10	23-0	7-7	11-1	14-1	17-2	19-11
	Hem-fir	SS	10-10	17-0	22-5	Note b	Note b	10-10	17-0	22-5	Note b	Note b
	Hem-fir	\#1	10-7	16-8	22-0	Note b	Note b	10-4	15-2	19-2	23-5	Note b
	Hem-fir	\#2	10-1	15-11	20-8	25-3	Note b	9-8	14-2	17-11	21-11	25-5
	Hem-fir	\#3	8-7	12-6	15-10	19-5	22-6	7-5	10-10	13-9	16-9	19-6
	Southern pine	SS	11-3	17-8	23-4	Note b	Note b	11-3	17-8	23-4	Note b	Note b
	Southern pine	\#1	10-10	17-0	22-5	Note b	Note b	10-6	15-8	19-10	23-2	Note b
	Southern pine	\#2	10-4	15-7	19-8	23-5	Note b	9-0	13-6	17-1	20-3	23-10
	Southern pine	\#3	8-0	11-9	14-10	18-0	21-4	6-11	10-2	12-10	15-7	18-6
	Spruce-pine-fir	SS	10-7	16-8	21-11	Note b	Note b	10-7	16-8	21-9	Note b	Note b
	Spruce-pine-fir	\#1	10-4	16-3	21-0	25-8	Note b	9-10	14-4	18-2	22-3	25-9
	Spruce-pine-fir	\#2	10-4	16-3	21-0	25-8	Note b	9-10	14-4	18-2	22-3	25-9
	Spruce-pine-fir	\#3	8-7	12-6	15-10	19-5	22-6	7-5	10-10	13-9	16-9	19-6
16	Douglas fir-larch	SS	10-5	16-4	21-7	Note b	Note b	10-5	16-3	20-7	25-2	Note b
	Douglas fir-larch	\#1	10-0	15-4	19-5	23-9	Note b	9-1	13-3	16-10	20-7	23-10
	Douglas fir-larch	\#2	9-10	14-7	18-5	22-6	26-0	8-7	12-7	16-0	19-6	22-7
	Douglas fir-larch	\#3	7-7	11-1	14-1	17-2	19-11	6-7	9-8	12-12	14-11	17-3
	Herr-fir	SS	9-10	15-6	20-5	Note b	Note b	9-10	15-6	19-11	24-4	Note b
	Hem-fir	\#1	9-8.	15-2	19-2	23-5	Note b	9-0	13-1	16-7	20-4	23-7
	Hem-fir	\#2	9-2	14-2	17-11	21-11	25-5	8-5	12-3	15-6	18-11	22-0
	Hem-fir	\#3	7-5	10-10	13-9	16-9	19-6	6-5	9-5	11-11	14-6	16-10
	Southern pine	SS	10-3	16-1	21-2	Note b	Note b	10-3	16-1	21-2	25-7	Note b
	Southern pine	\#1	9-10	15-6	19-10	23-2	Note b	9-1	13-7	17-2	20-1	23-10
	Southern pine	\#2	9-0	13-6	17-1	20-3	23-10	7-9	11-8	14-9	17-6	20-8
	Southern pine	\#3	6-11	10-2	12-10	15-7	18-6	6-0	8-10	11-2	13-6	16-0
	Spruce-pine-fir	SS	9-8	15-2	19-11	25-5	Note b	9-8	14-10	18-10	23-0	Note b
	Spruce-pine-fir	\#1	9-5	14-4	18-2	22-3	25-9	8-6	12-5	15-9	19-3	22-4
	Spruce-pine-fir	\#2	9-5	14-4	18-2	22-3	25-9	8-6	12-5	15-9	19-3	22-4
	Spruce-pine-fir	\#3	7-5	10-10	13-9	16-9	19-6	6-5	9-5	11-11	14-6	16-10
19.2	Douglas fir-larch	SS	9-10	15-5	20-4	25-11	Note b	9-10	14-10	18-10	23-0	Note b
	Douglas fir-larch	\#1	9-5	14-0	17-9	21-8	25-2	8-4	12-2	15-4	18-9	21-9
	Douglas fir-larch	\#2	9-1	13-3	16-10	20-7	23-10	7-10	11-6	14-7	17-10	20-8
	Douglas fir-larch	\#3	6-11	10-2	12-10	15-8	18-3	6-0	8-9	11-2	12-7	15-9
	Hem-fir	SS	9-3	14-7	19-2	24-6	Note b	9-3	14-4	18-2	22-3	25-9
	Hem-fir	\#1	9-1	13-10	17-6	21-5	24-10	8-2	12-0	15-2	18-6	21-6
	Hem-fir	\#2	8-8	12-11	16-4	20-0	23-2	7-8	11-2	14-2	17-4	20-1
	Hem-fir	\#3	6-9	9-11	12-7	15-4	17-9	5-10	8-7	10-10	13-3	15-5
	Southern pine	SS	9-8	15-2	19-11	25-5	Note b	9-8	15-2	19-7	23-4	Note b
	Southern pine	\#1	9-3	14-3	18-1	21-2	25-2	8-4	12-4	15-8	18-4	21-9
	Southern pine	\#2	8-2	12-3	15-7	18-6	21-9	7-1	10-8	13-6	16-0	18-10
	Southern pine	\#3	6-4	9-4	11-9	14-3	16-10	5-6	8-1	10-2	12-4	14-7
	Spruce-pine-fir	SS	9-1	14-3	18-9	23-11	Note b	9-1	13-7	17-2	21-0	24-4
	Spruce-pine-fir	\#1	8-10	13-1	16-7	20-3	23-6	7-9	11-4	14-4	17-7	20-4
	Spruce-pine-fir	\#2	8-10	13-1	16-7	20-3	23-6	7-9	11-4	14-4	17-7	20-4
	Spruce-pine-fir	\#3	6-9	9-11	12-7	15-4	17-9	5-10	8-7	10-10	13-3	15-5

(continued)

TABLE R802.5.1(1)—continued
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Roof live load $=\mathbf{2 0} \mathrm{psf}$, ceiling not attached to rafters, $L / \Delta=180$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feet inches)	(feet inches)	$\begin{gathered} \text { (feet - } \\ \text { inches) } \end{gathered}$	(feet inches)						
24	Douglas fir-larch	SS	9-1	14-4	18-10	23-9	Note b	9-1	13-3	16-10	20-7	23-10
	Douglas fir-larch	\#1	8-7	12-6	15-10	19-5	22-6	7-5	10-10	13-9	16-9	19-6
	Douglas fir-larch	\#2	8-2	11-11	15-1	18-5	21-4	7-0	10-4	13-0	15-11	18-6
	Douglas fir-larch	\#3	6-2	9-1	11-6	14-1	16-3	5-4	7-10	10-0	12-2	14-1
	Hem-fir	SS	8-7	13-6	17-10	22-9	Note b	8-7	12-10	16-3	19-10	23-0
	Hem-fir	\#1	8-5	12-4	15-8	19-2	22-2	7-4	10-9	13-7	16-7	19-3
	Hem-fir	\#2	7-11	11-7	14-8	17-10	20-9	6-10	10-0	12-8	15-6	17-11
	Hem-fir	\#3	6-1	8-10	11-3	13-8	15-11	5-3	7-8	9-9	11-10	13-9
	Southern pine	SS	8-11	14-1	18-6	23-8	Note b	8-11	13-10	17-6	20-10	24-8
	Southern pine	\#1	8-7	12-9	16-2	18-11	22-6	7-5	11-1	14-0	16-5	19-6
	Southern pine	\#2	7-4	11-0	10-11	16-6	19-6	6-4	9-6	12-1	14-4	16-10
	Southern pine	\#3	5-8	8-4	10-6	12-9	15-1	4-11	7-3	9-1	11-0	13-1
	Spruce-pine-fir	SS	8-5	13-3	17-5	21-8	25-2	8-4	12-2	15-4	18-9	21-9
	Spruce-pine-fir	\#1	8-0	11-9	14-10	18-2	21-0	6-11	10-2	12-10	15-8	18-3
	Spruce-pine-fir	\#2	8-0	11-9	14-10	18-2	21-0	6-11	10-2	12-10	15-8	18-3
	Spruce-pine-fir	\#3	6-1	8-10	11-3	13-8	15-11	5-3	7-8	9-9	11-10	13-9

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. Where ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the following factors:

$\boldsymbol{H}_{d} \boldsymbol{H}_{\boldsymbol{R}}$	Rafter Span Adjustment Factor
$1 / 3$	0.67
$1 / 4$	0.76
$1 / 5$	0.83
$1 / 6$	0.90
$1 / 7.5$ or less	1.00

where:
$H_{C}=$ Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
$H_{R}=$ Height of roof ridge measured vertically above the top of the rafter support walls.
b. Span exceeds 26 feet in length.

TABLE R802.5.1(2)
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Roof live load = 20 psf, ceiling attached to rafters, $\mathrm{L} / \Delta=240$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feet inches)									
12	Douglas fir-larch	SS	10-5	16-4	21-7	Note b	Note b	10-5	16-4	21-7	Note b	Note b
	Douglas fir-larch	\#1	10-0	15-9	20-10	Note b	Note b	10-0	15-4	19-5	23-9	Note b
	Douglas fir-larch	\#2	9-10	15-6	20-5	26-0	Note b	9-10	14-7	18-5	22-6	26-0
	Douglas fir-larch	\#3	8-9	12-10	16-3	19-10	23-0	7-7	11-1	14-1	17-2	19-11
	Hem-fir	SS	9-10	15-6	20-5	Note b	Note b	9-10	15-6	20-5	Note b	Note b
	Hem-fir	\#1	9-8	15-2	19-11	25-5	Note b	9-8	15-2	19-2	23-5	Note b
	Hem-fir	\#2	9-2	14-5	19-0	24-3	Note b	9-2	14-2	17-11	21-11	25-5
	Hem-fir	\#3	8-7	12-6	15-10	19-5	22-6	7-5	10-10	13-9	16-9	19-6
	Southern pine	SS	10-3	16-1	21-2	Note b	Note b	10-3	16-1	21-2	Note b	Note b
	Southern pine	\#1	9-10	15-6	20-5	Note b	Note b	9-10	15-6	19-10	23-2	Note b
	Southern pine	\#2	9-5	14-9	19-6	23-5	Note b	9-0	13-6	17-1	20-3	23-10
	Southern pine	\#3	8-0	11-9	14-10	18-0	21-4	6-11	10-2	12-10	15-7	18-6
	Spruce-pine-fir	SS	9-8	15-2	19-11	25-5	Note b	9-8	15-2	19-11	25-5	Note b
	Spruce-pine-fir	\#1	9-5	14-9	19-6	24-10	Note b	9-5	14-4	18-2	22-3	25-9
	Spruce-pine-fir	\#2	9-5	14-9	19-6	24-10	Note b	9-5	14-4	18-2	22-3	25-9
	Spruce-pine-fir	\#3	8-7	12-6	15-10	19-5	22-6	7-5	10-10	13-9	16-9	19-6
16	Douglas fir-larch	SS	9-6	14-11	19-7	25-0	Note b	9-6	14-11	19-7	25-0	Note b
	Douglas fir-larch	\#1	9-1	14-4'	18-11	23-9	Note b	9-1	13-3	16-10	20-7	23-10
	Douglas fir-larch	\#2	8-11	14-1	18-5	22-6	26-0	8-7	12-7	16-0	19-6	22-7
	Douglas fir-larch	\#3	7-7	11-1	14-1	17-2	19-11	6-7	9-8	12-2	14-11	17-3
	Hem-fir	SS	8-11	14-1	18-6	23-8	Note b	8-11	14-1	18-6	23-8	Note b
	Hem-fir	\#1	8-9	13-9	18-1	23-1	Note b	8-9	13-1	16-7	20-4	23-7
	Hem-fir	\#2	8-4	13-1	17-3	21-11	25-5	8-4	12-3	15-6	18-11	22-0
	Hem-fir	\#3	7-5	10-10	13-9	16-9	19-6	6-5	9-5	11-11	14-6	16-10
	Southern pine	SS	9-4	14-7	19-3	24-7	Note b	9-4	14-7	19-3	24-7	Note b
	Southern pine	\#1	8-11	14-1	18-6	23-2	Note b	8-11	13-7	17-2	20-1	23-10
	Southern pine	\#2	8-7	13-5	17-1	20-3	23-10	7-9	11-8	14-9	17-6	20-8
	Southern pine	\#3	6-11	10-2	12-10	15-7	18-6	6-0	8-10	11-2	13-6	16-0
	Spruce-pine-fir	SS	8-9	13-9	18-1	23-1	Note b	8-9	13-9	18-1	23-0	Note b
	Spruce-pine-fir	\#1	8-7	13-5	17-9	22-3	25-9	8-6	12-5	15-9	19-3	22-4
	Spruce-pine-fir	\#2	8-7	13-5	17-9	22-3	25-9	8-6	12-5	15-9	19-3	22-4
	Spruce-pine-fir	\#3	7-5	10-10	13-9	16-9	19-6	6-5	9-5	11-11	14-6	16-10
19.2	Douglas fir-larch	SS	8-11	14-0	18-5	23-7	Note b	8-11	14-0	18-5	23-0	Note b
	Douglas fir-larch	\#1	8-7	13-6	17-9	21-8	25-2	8-4	12-2	15-4	18-9	21-9
	Douglas fir-larch	\#2	8-5	13-3	16-10	20-7	23-10	7-10	11-6	14-7	17-10	20-8
	Douglas fir-larch	\#3	6-11	10-2	12-10	15-8	18-3	6-0	8-9	11-2	13-7	15-9
	Hem-fir	SS	8-5	13-3	17-5	22-3	Note b	8-5	13-3	17-5	22-3	25-9
	Hem-fir	\#1	8-3	12-11	17-1	21-5	24-10	8-2	12-0	15-2	18-6	21-6
	Hem-fir	\#2	7-10	12-4	16-3	20-0	23-2	7-8	11-2	14-2	17-4	20-1
	Hem-fir	\#3	6-9	9-11	12-7	15-4	17-9	5-10	8-7	10-10	13-3	15-5

TABLE R802.5.1(2)-continued
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Roof live load $=\mathbf{2 0} \mathbf{p s f}$, ceiling attached to rafters, $\mathrm{L} / \Delta=240$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feet inches)	(feet - inches)	(feet inches)							
19.2	Southern pine	SS	8-9	13-9	18-2	23-1	Note b	8-9	13-9	18-2	23-1	Note b
	Southern pine	\#1	8-5	13-3	17-5	21-2	25-2	8-4	12-4	15-8	18-4	21-9
	Southern pine	\#2	8-1	12-3	15-7	18-6	21-9	7-1	10-8	13-6	16-0	18-10
	Southern pine	\#3	6-4	9-4	11-9	14-3	16-10	5-6	8-1	10-2	12-4	14-7
	Spruce-pine-fir	SS	8-3	12-11	17-1	21-9	Note b	8-3	12-11	17-1	21-0	24-4
	Spruce-pine-fir	\#1	8-1	12-8	16-7	20-3	23-6	7-9	11-4	14-4	17-7	20-4
	Spruce-pine-fir	\#2	8-1	12-8	16-7	20-3	23-6	7-9	11-4	14-4	17-7	20-4
	Spruce-pine-fir	\#3	6-9	9-11	12-7	15-4	17-9	5-10	8-7	10-10	13-3	15-5
24	Douglas fir-larch	SS	8-3	13-0	17-2	21-10	Note b	8-3	13-0	16-10	20-7	23-10
	Douglas fir-larch	\#1	8-0	12-6	15-10	19-5	22-6	7-5	10-10	13-9	16-9	19-6
	Douglas fir-larch	\#2	7-10	11-11	15-1	18-5	21-4	7-0	10-4	13-0	15-11	18-6
	Douglas fir-larch	\#3	6-2	9-1	11-6	14-1	16-3	5-4	7-10	10-0	12-2	14-1
	Hem-fir	SS	7-10	12-3	16-2	20-8	25-1	7-10	12-3	16-2	19-10	23-0
	Hem-fir	\#1	7-8	12-0	15-8	19-2	22-2	7-4	10-9	13-7	16-7	19-3
	Hem-fir	\#2	7-3	11-5	14-8	17-10	20-9	6-10	10-0	12-8	15-6	17-11
	Hem-fir	\#3	6-1	8-10	11-3	13-8	15-11	5-3	7-8	9-9	11-10	13-9
	Southern pine	SS	8-1	12-9	16-10	21-6	Note b	8-1	12-9	16-10	20-10	24-8
	Southern pine	\#1	7-10	12-3	16-2 ${ }^{\circ}$	18-11	22-6	7-5	11-1	14-0	16-5	19-6
	Southern pine	\#2	7-4	11-0	13-11	16-6	19-6	6-4	9-6	12-1	14-4	16-10
	Southern pine	\#3	5-8	8-4	10-6	12-9	15-1	4-11	7-3	9-1	11-0	13-1
	Spruce-pine-fir	SS	7-8	12-0	15-10	20-2	24-7	7-8	12-0	15-4	18-9	21-9
	Spruce-pine-fir	\#1	7-6	11-9	14-10	18-2	21-0	6-11	10-2	12-10	15-8	18-3
	Spruce-pine-fir	\#2	7-6	11-9	14-10	18-2	21-0	6-11	10-2	12-10	15-8	18-3
	Spruce-pine-fir	\#3	6-1	8-10	11-3	13-8	15-11	5-3	7-8	9-9	11-10	13-9

Check sources for avallability of lumber in lengths greater than 20 feet.
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. Where ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the following factors:

H_{C} / H_{R}	Rafter Span Adjustment Factor
$1 / 3$	0.67
$1 / 4$	0.76
$1 / 5$	0.83
$1 / 6$	0.90
$1 / 7.5$ or less	1.00

where:
$H_{C}=$ Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
$H_{R}=$ Height of roof ridge measured vertically above the top of the rafter support walls.
b. Span exceeds 26 feet in length.

TABLE R802.5.1(3)
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Ground snow load = 30 psf, ceiling not attached to rafters, $L / \Delta=180$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feet inches)	(feet inches)	(feet inches)	$\begin{gathered} \text { (feet - } \\ \text { inches) } \end{gathered}$	(feet inches)					
12	Douglas fir-larch	SS	10-0	15-9	20-9	Note b	Note b	10-0	15-9	20-5	24-11	Note b
	Douglas fir-larch	\#1	9-8	14-9	18-8	22-9	Note b	9-0	13-2	16-8	20-4	23-7
	Douglas fir-larch	\#2	9-6	14-0	17-8	21-7	25-1	8-6	12-6	15-10	19-4	22-5
	Douglas fir-larch	\#3	7-3	10-8	13-6	16-6	19-2	6-6	9-6	12-1	14-9	17-1
	Hem-fir	SS	9-6	14-10	19-7	25-0	Note b	9-6	14-10	19-7	24-1	Note b
	Hem-fir	\#1	9-3	14-6	18-5	22-6	26-0	8-11	13-0	16-6	20-1	23-4
	Hem-fir	\#2	8-10	13-7	17-2	21-0	24-4	8-4	12-2	15-4	18-9	21-9
	Hem-fir	\#3	7-1	10-5	13-2	16-1	18-8	6-4	9-4	11-9	14-5	16-8
	Southern pine	SS	9-10	15-6	20-5	Note b	Note b	9-10	15-6	20-5	25-4	Note b
	Southern pine	\#1	9-6	14-10	19-0	22-3	Note b	9-0	13-5	17-0	19-11	23-7
	Southern pine	\#2	8-7	12-11	16-4	19-5	22-10	7-8	11-7	14-8	17-4	20-5
	Southern pine	\#3	6-7	9-9	12-4	15-0	17-9	5-11	8-9	11-0	13-5	15-10
	Spruce-pine-fir	SS	9-3	14-7	19-2	24-6	Note b	9-3	14-7	18-8	22-9	Note b
	Spruce-pine-fir	\#1	9-1	13-9	17-5	21-4	24-8	8-5	12-4	15-7	19-1	22-1
	Spruce-pine-fir	\#2	9-1	13-9	17-5	21-4	24-8	8-5	12-4	15-7	19-1	22-1
	Spruce-pine-fir	\#3	7-1	10-5	13-2	16-1	18-8	6-4	9-4	11-9	14-5	16-8
16	Douglas fir-larch	SS	9-1	14-4	18-10	24-1	Note b	9-1	14-0	17-8	21-7	25-1
	Douglas fir-larch	\#1	8-9	12-9	16-2 ${ }^{\text {, }}$	19-9	22-10	7-10	11-5	14-5	17-8	20-5
	Douglas fir-larch	\#2	8-3	12-1	15-4	18-9	21-8	7-5	10-10	13-8	16-9	19-5
	Douglas fir-larch	\#3	6-4	9-3	11-8	14-3	16-7	5-8	8-3	10-6	12-9	14-10
	Hem-fir	SS	8-7	13-6	17-10	22-9	Note b	8-7	13-6	17-1	20-10	24-2
	Hem-fir	\#1	8-5	12-7	15-11	19-6	22-7	7-8	11-3	14-3	17-5	20-2
	Hem-fir	\#2	8-0	11-9	14-11	18-2	21-1	7-2	10-6	13-4	16-3	18-10
	Hem-fir	\#3	6-2	9-0	11-5	13-11	16-2	5-6	8-1	10-3	12-6	14-6
	Southern pine	SS	8-11	14-1	18-6	23-8	Note b	8-11	14-1	18-5	1-11	25-11
	Southern pine	\#1	8-7	13-0	16-6	19-3	22-10	7-10	11-7	14-9	17-3	20-5
	Southern pine	\#2	7-6	11-2	14-2	16-10	19-10	6-8	10-0	12-8	15-1	17-9
	Southern pine	\#3	5-9	8-6	10-8	13-0	15-4	5-2	7-7	9-7	11-7	13-9
	Spruce-pine-fir	SS	8-5	13-3	17-5	22-1	25-7	8-5	12-9	16-2	19-9	22-10
	Spruce-pine-fir	\#1	8-2	11-11	15-1	18-5	21-5	7-3	10-8	13-6	16-6	19-2
	Spruce-pine-fir	\#2	8-2	11-11	15-1	18-5	21-5	7-3	10-8	13-6	16-6	19-2
	Spruce-pine-fir	\#3	6-2	9-0	11-5	13-11	16-2	5-6	8-1	10-3	12-6	14-6
19.2	Douglas fir-larch	SS	8-7	13-6	17-9	22-1	25-7	8-7	12-9	16-2	19-9	22-10
	Douglas fir-larch	\#1	7-11	11-8	14-9	18-0	20-11	7-1	10-5	13-2	16-1	18-8
	Douglas fir-larch	\#2	7-7	11-0	14-0	17-1	19-10	6-9	9-10	12-6	15-3	17-9
	Douglas fir-larch	\#3	5-9	8-5	10-8	13-1	15-2	5-2	7-7	9-7	11-8	13-6
	Hem-fir	SS	8-1	12-9	16-9	21-4	24-8	8-1	12-4	15-7	19-1	22-1
	Hem-fir	\#1	7-10	11-6	14-7	17-9	20-7	7-0	10-3	13-0	15-11	18-5
	Hem-fir	\#2	7-4	10-9	13-7	16-7	19-3	6-7	9-7	12-2	14-10	17-3
	Hem-fir	\#3	5-7	8-3	10-5	12-9	14-9	5-0	7-4	9-4	11-5	13-2

(continued)

TABLE R802.5.1(3)-continued
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Ground snow load $=30 \mathrm{psf}$, ceiling not attached to rafters, $L / \Delta=180$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feet inches)									
19.2	Southern pine	SS	8-5	13-3	17-5	22-3	Note b	8-5	13-3	16-10	20-0	23-7
	Southern pine	\#1	8-0	11-10	15-1	17-7	20-11	7-1	10-7	13-5	15-9	18-8
	Southern pine	\#2	6-10	10-2	12-11	15-4	18-1	6-1	9-2	11-7	13-9	16-2
	Southern pine	\#3	5-3	7-9	9-9	11-10	14-0	4-8	6-11	8-9	10-7	12-6
	Spruce-pine-fir	SS	7-11	12-5	16-5	20-2	23-4	7-11	11-8	14-9	18-0	20-11
	Spruce-pine-fir	\#1	7-5	10-11	13-9	16-10	19-6	6-8	9-9	12-4	15-1	17-6
	Spruce-pine-fir	\#2	7-5	10-11	13-9	16-10	19-6	6-8	9-9	12-4	15-1	17-6
	Spruce-pine-fir	\#3	5-7	8-3	10-5	12-9	14-9	5-0	7-4	9-4	11-5	13-2
24	Douglas fir-larch	SS	8-0	12-6	16-2	19-9	22-10	7-10	11-5	14-5	17-8	20-5
	Douglas fir-larch	\#1	7-1	10-5	13-2	16-1	18-8	6-4	9-4	11-9	14-5	16-8
	Douglas fir-larch	\#2	6-9	9-10	12-6	15-3	17-9	6-0	8-10	11-2	13-8	15-10
	Douglas fir-larch	\#3	5-2	7-7	9-7	11-8	13-6	4-7	6-9	8-7	10-5	12-1
	Hem-fir	SS	7-6	11-10	15-7	19-1	22-1	7-6	11-0	13-11	17-0	19-9
	Hem-fir	\#1	7-0	10-3	13-0	15-11	18-5	6-3	9-2	11-8	14-3	16-6
	Hem-fir	\#2	6-7	9-7	12-2	14-10	17-3	5-10	8-7	10-10	13-3	15-5
	Hem-fir	\#3	5-0	7-4	9-4	11-5	13-2	4-6	6-7	8-4	10-2	11-10
	Southern pine	SS	7-10	12-3	16-2	20-0	23-7	7-10	11-10	15-0	17-11	21-2
	Southern pine	\#1	7-1	10-7	13-5	15-9	18-8	6-4	9-6	12-0	14-1	16-8
	Southern pine	\#2	6-1	9-2	11-7	13-9	16-2	5-5	8-2	10-4	12-3	14-6
	Southern pine	\#3	4-8	6-11	8-9	10-7	12-6	4-2	6-2	7-10	9-6	11-2
	Spruce-pine-fir	SS	7-4	11-7	14-9	18-0	20-11	7-1	10-5	13-2	16-1	18-8
	Spruce-pine-fir	\#1	6-8	9-9	12-4	15-1	17-6	5-11	8-8	11-0	13-6	15-7
	Spruce-pine-fir	\#2	6-8	9-9	12-4	15-1	17-6	5-11	8-8	11-0	13-6	15-7
	Spruce-pine-fir	\#3	5-0	7-4	9-4	11-5	13-2	4-6	6-7	8-4	10-2	11-10

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. Where ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the following factors:

H_{C} / H_{R}	Rafter Span Adjustment Factor
$1 / 3$	0.67
$1 / 4$	0.76
$1 / 5$	0.83
$1 / 6$	0.90
$1 / 7.5$ or less	1.00

where:
$H_{C}=$ Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
$H_{R}=$ Height of roof ridge measured vertically above the top of the rafter support walls.
b. Span exceeds 26 feet in length.

TABLE R802.5.1(4)
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Ground snow load $=50$ psf, ceiling not attached to rafters, $L / \Delta=180$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{2}$									
			(feet inches)	$\begin{gathered} \text { (feet - } \\ \text { inches) } \end{gathered}$	(feet inches)							
12	Douglas fir-larch	SS	8-5	13-3	17-6	22-4	26-0	8-5	13-3	17-3	21-1	24-5
	Douglas fir-larch	\#1	8-2	12-0	15-3	18-7	21-7	7-7	11-2	14-1	17-3	20-0
	Douglas fir-larch	\#2	7-10	11-5	14-5	17-8	20-5	7-3	10-7	13-4	16-4	18-11
	Douglas fir-larch	\#3	6-0	8-9	11-0	13-6	15-7	5-6	8-1	10-3	12-6	14-6
	Hem-fir	SS	8-0	12-6	16-6	21-1.	25-6	8-0	12-6	16-6	20-4	23-7
	Hem-fir	\#1	7-10	11-10	15-0	18-4	21-3	7-6	11-0	13-11	17-0	19-9
	Hem-fir	\#2	7-5	11-1	14-0	17-2	19-11	7-0	10-3	13-0	15-10	18-5
	Hem-fir	\#3	5-10	8-6	10-9	13-2	15-3	5-5	7-10	10-0	12-2	14-1
	Southern pine	SS	8-4	13-1	17-2	21-11	Note b	8-4	13-1	17-2	21-5	25-3
	Southern pine	\#1	8-0	12-3	15-6	18-2	21-7	7-7	11-4	14-5	16-10	20-0
	Southern pine	\#2	7-0	10-6	13-4	15-10	18-8	6-6	9-9	12-4	14-8	17-3
	Southern pine	\#3	5-5	8-0	10-1	12-3	14-6	5-0	7-5	9-4	11-4	13-5
	Spruce-pine-fir	SS	7-10	12-3	16-2	20-8	24-1	7-10	12-3	15-9	19-3	22-4
	Spruce-pine-fir	\#1	7-8	11-3	14-3	17-5	20-2	7-1	10-5	13-2	16-1	18-8
	Spruce-pine-fir	\#2	7-8	11-3	14-3	17-5	20-2	7-1	10-5	13-2	16-1	18-8
	Spruce-pine-fir	\#3	5-10	8-6	10-9	13-2	15-3	5-5	7-10	10-0	12-2	14-1
	Douglas fir-larch	SS	7-8	12-1	15-11	19-9	22-10	7-8	11-10	14-11	18-3	21-2
	Douglas fir-larch	\#1	7-1	10-5	13-2	16-1	18-8	6-7	9-8	12-2	14-11	17-3
	Douglas fir-larch	\#2	6-9	9-10	12-6	15-3	17-9	6-3	9-2	11-7	14-2	16-5
	Douglas fir-larch	\#3	5-2	7-7	9-7	11-18	13-6	4-9	7-0	8-10	10-10	12-6
	Hem-fir	SS	7-3	11-5	15-0	19-1	22-1	7-3	11-5	14-5	17-8	20-5
	Hem-fir	\#1	7-0	10-3	13-0	15-11	18-5	6-6	9-6	12-1	14-9	17-1
	Hem-fir	\#2	6-7	9-7	12-2	14-10	17-3	6-1	8-11	11-3	13-9	15-11
	Hem-fir	\#3	5-0	7-4	9-4	11-5	13-2	4-8	6-10	8-8	10-6	12-3
16	Southern pine	SS	7-6	11-10	15-7	19-11	23-7	7-6	11-10	15-7	18-6	21-10
	Southern pine	\#1	7-1	10-7	13-5	15-9	18-8	6-7	9-10	12-5	14-7	17-3
	Southern pine	\#2	6-1	9-2	11-7	13-9	16-2	5-8	8-5	10-9	12-9	15-0
	Southern pine	\#3	4-8	6-11	8-9	10-7	12-6	4-4	6-5	8-1	9-10	11-7
	Spruce-pine-fir	SS	7-1	11-2	14-8	18-0	20-11	7-1	10-9	13-8	15-11	19-4
	Spruce-pine-fir	\#1	6-8	9-9	12-4	15-1	17-6	6-2	9-0	11-5	13-11	16-2
	Spruce-pine-fir	\#2	6-8	9-9	12-4	15-1	17-6	6-2	9-0	11-5	13-11	16-2
	Spruce-pine-fir	\#3	5-0	7-4	9-4	11-5	13-2	4-8	6-10	8-8	10-6	12-3
19.2	Douglas fir-larch	SS	7-3	11-4	14-9	18-0	20-11	7-3	10-9	13-8	16-8	19-4
	Douglas fir-larch	\#1	6-6	9-6	12-0	14-8	17-1	6-0	8-10	11-2	13-7	15-9
	Douglas fir-larch	\#2	6-2	9-0	11-5	13-11	16-2	5-8	8-4	10-9	12-11	15-0
	Douglas fir-larch	\#3	4-8	6-11	8-9	10-8	12-4	4-4	6-4	8-1	9-10	11-5
	Hem-fir	SS	6-10	10-9	14-2	17-5	20-2	6-10	10-5	13-2	16-1	18-8
	Hem-fir	\#1	6-5	9-5	11-11	14-6	16-10	8-11	8-8	11-0	13-5	15-7
	Hem-fir	\#2	6-0	8-9	11-1	13-7	15-9	5-7	8-1	10-3	12-7	14-7
	Hem-fir	\#3	4-7	6-9	8-6	10-5	12-1	4-3	6-3	7-11	9-7	11-2

(continued)

TABLE R802.5.1(4)-continued
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Ground snow load $=50 \mathrm{psf}$, ceiling not attached to rafters, $\mathrm{L} / \Delta=180$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20$ psf				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feet inches)	$\begin{aligned} & \text { (feet - } \\ & \text { inches) } \end{aligned}$								
19.2	Southern pine	SS	7-1	11-2	14-8	18-3	21-7	7-1	11-2	14-2	16-11	20-0
	Southern pine	\#1	6-6	9-8	12-3	14-4	17-1	6-0	9-0	11-4	13-4	15-9
	Southern pine	\#2	5-7	8-4	10-7	12-6	14-9	5-2	7-9	9-9	11-7	13-8
	Southern pine	\#3	4-3	6-4	8-0	9-8	11-5	4-0	5-10	7-4	8-11	10-7
	Spruce-pine-fir	SS	6-8	10-6	13-5	16-5	19-1	6-8	9-10	12-5	15-3	17-8
	Spruce-pine-fir	\#1	6-1	8-11	11-3	13-9	15-11	5-7	8-3	10-5	12-9	14-9
	Spruce-pine-fir	\#2	6-1	8-11	11-3	13-9	15-11	5-7	8-3	10-5	12-9	14-9
	Spruce-pine-fir	\#3	4-7	6-9	8-6	10-5	12-1	4-3	6-3	7-11	9-7	11-2
24	Douglas fir-larch	SS	6-8	10-5	13-2	16-1	18-8	6-7	9-8	12-2	14-11	17-3
	Douglas fir-larch	\#1	5-10	8-6	10-9	13-2	15-3	5-5	7-10	10-0	12-2	14-1
	Douglas fir-larch	\#2	5-6	8-1	10-3	12-6	14-6	5-1	7-6	9-5	11-7	13-5
	Douglas fir-larch	\#3	4-3	6-2	7-10	9-6	11-1	3-11	5-8	7-3	8-10	10-3
	Hem-fir	SS	6-4	9-11	12-9	15-7	18-0	6-4	9-4	11-9	14-5	16-8
	Hem-fir	\#1	5-9	8-5	10-8	13-0	15-1	8-4	7-9	9-10	12-0	13-11
	Hem-fir	\#2	5-4	7-10	9-11	12-1	14-1	4-11	7-3	9-2	11-3	13-0
	Hem-fir	\#3	4-1	6-0	7-7	9-4	10-9	3-10	5-7	7-1	8-7	10-0
	Southern pine	SS	6-7	10-4	13-8	16-4	19-3	6-7	10-0	12-8	15-2	17-10
	Southern pine	\#1	5-10	8-8	11-0	12-10	15-3	5-5	8-0	10-2	11-11	14-1
	Southern pine	\#2	5-0	7-5	9-5	11-3	13-2	4-7	6-11	8-9	10-5	12-3
	Southern pine	\#3	3-10	5-8	7-1	8-8	10-3	3-6	5-3	6-7	8-0	9-6
	Spruce-pine-fir	SS	6-2	9-6	12-0	14-8	17-1	6-0	8-10	11-2	13-7	15-9
	Spruce-pine-fir	\#1	5-5	7-11	10-1	12-4	14-3	5-0	7-4	9-4	11-5	13-2
	Spruce-pine-fir	\#2	5-5	7-11	10-1	12-4	14-3	5-0	7-4	9-4	11-5	13-2
	Spruce-pine-fir	\#3	4-1	6-0	7-7	9-4	10-9	3-10	5-7	7-1	8-7	10-0

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$
a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. Where ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the following factors:

H_{C} / H_{R}	Rafter Span Adjustment Factor
$1 / 3$	0.67
$1 / 4$	0.76
$1 / 5$	0.83
$1 / 6$	0.90
$1 / 7.5$ or less	1.00

where:
$H_{C}=$ Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
$H_{R}=$ Height of roof ridge measured vertically above the top of the rafter support walls.
b. Span exceeds 26 feet in length.

TABLE R802.5.1(5)
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Ground snow load = 30 psf, ceiling attached to rafters, $L / \Delta=240$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feet inches)	(feet inches)	(feet inches)	(feet inches)	$\begin{gathered} \text { (feet - } \\ \text { inches) } \end{gathered}$	(feet- inches) inches)	$\begin{gathered} \text { (feet - } \\ \text { inches) } \end{gathered}$	(feet - inches)	(feet inches)	(feet inches)
12	Douglas fir-larch	SS	9-1	14-4	18-10	24-1	Note b	9-1	14-4	18-10	24-1	Note b
	Douglas fir-larch	\#1	8-9	13-9	18-2	22-9	Note b	8-9	13-2	16-8	20-4	23-7
	Douglas fir-larch	\#2	8-7	13-6	17-8	21-7	25-1	8-6	12-6	15-10	19-4	22-5
	Douglas fir-larch	\#3	7-3	10-8	13-6	16-6	19-2	6-6	9-6	12-1	14-9	17-1
	Hem-fir	SS	8-7	13-6	17-10	22-9	Note b	8-7	13-6	17-10	22-9	Note b
	Hem-fir	\#1	8-5	13-3	17-5	22-3	26-0	8-5	13-0	16-6	20-1	23-4
	Hem-fir	\#2	8-0	12-7	16-7	21-0	24-4	8-0	12-2	15-4	18-9	21-9
	Hem-fir	\#3	7-1	10-5	13-2	16-1	18-8	6-4	9-4	11-9	14-5	16-8
	Southern pine	SS	8-11	14-1	18-6	23-8	Note b	8-11	14-1	18-6	23-8	Note b
	Southern pine	\#1	8-7	13-6	17-10	22-3	Note b	8-7	13-5	17-0	19-11	23-7
	Southern pine	\#2	8-3	12-11	16-4	19-5	22-10	7-8	11-7	14-8	17-4	20-5
	Southern pine	\#3	6-7	9-9	12-4	15-0	17-9	5-11	8-9	11-0	13-5	15-10
	Spruce-pine-fir	SS	8-5	13-3	17-5	22-3	Note b	8-5	13-3	17-5	22-3	Note b
	Spruce-pine-fir	\#1	8-3	12-11	17-0	21-4	24-8	8-3	12-4	15-7	19-1	22-1
	Spruce-pine-fir	\#2	8-3	12-11	17-0	21-4	24-8	8-3	12-4	15-7	19-1	22-1
	Spruce-pine-fir	\#3	7-1	10-5	13-2	16-1	18-8	6-4	9-4	11-9	14-5	16-8
16	Douglas fir-larch	SS	8-3	13-0	17-2	21-10	Note b	8-3	13-0	17-2	21-7	25-1
	Douglas fir-larch	\#1	8-0	12-6	16-2	19-9	22-10	7-10	11-5	14-5	17-8	20-5
	Douglas fir-larch	\#2	7-10	12-1	15-4	18-9	21-8	7-5	10-10	13-8	16-9	19-5
	Douglas fir-larch	\#3	6-4	9-3	11-8	14-3	16-7	5-8	8-3	10-6	12-9	14-10
	Hem-fir	SS	7-10	12-3	16-2	20-8	25-1	7-10	12-3	16-2	20-8	24-2
	Hem-fir	\#1	7-8	12-0	15-10	19-6	22-7	7-8	11-3	14-3	17-5	20-2
	Hem-fir	\#2	7-3	11-5	14-11	18-2	21-1	7-2	10-6	13-4	16-3	18-10
	Hem-fir	\#3	6-2	9-0	11-5	13-11	16-2	5-6	8-1	10-3	12-6	14-6
	Southern pine	SS	8-1	12-9	16-10	21-6	Note b	8-1	12-9	16-10	21-6	25-11
	Southern pine	\#1	7-10	12-3	16-2	19-3	22-10	7-10	11-7	14-9	17-3	20-5
	Southern pine	\#2	7-6	11-2	14-2	16-10	19-10	6-8	10-0	12-8	15-1	17-9
	Southern pine	\#3	5-9	8-6	10-8	13-0	15-4	5-2	7-7	9-7	11-7	13-9
	Spruce-pine-fir	SS	7-8	12-0	15-10	20-2	24-7	7-8	12-0	15-10	19-9	22-10
	Spruce-pine-fir	\#1	7-6	11-9	15-1	18-5	21-5	7-3	10-8	13-6	16-6	19-2
	Spruce-pine-fir	\#2	7-6	11-9	15-1	18-5	21-5	7-3	10-8	13-6	16-6	19-2
	Spruce-pine-fir	\#3	6-2	9-0	11-5	13-11	16-2	5-6	8-1	10-3	12-6	14-6
19.2	Douglas fir-larch	SS	7-9	12-3	16-1	20-7	25-0	7-9	12-3	16-1	19-9	22-10
	Douglas fir-larch	\#1	7-6	11-8	14-9	18-0	20-11	7-1	10-5	13-2	16-1	18-8
	Douglas fir-larch	\#2	7-4	11-0	14-0	17-1	19-10	6-9	9-1	12-6	15-3	17-9
	Douglas fir-larch	\#3	5-9	8-5	10-8	13-1	15-2	5-2	7-7	9-7	11-8	13-6
	Hem-fir	SS	7-4	11-7	15-3	19-5	23-7	7-4	11-7	15-3	19-1	22-1
	Hem-fir	\#1	7-2	11-4	14-7	17-9	20-7	7-0	16-3	13-0	15-11	18-5
	Hem-fir	\#2	6-10	10-9	13-7	16-7	19-3	6-7	9-7	12-2	14-10	17-3
	Hem-fir	\#3	5-7	8-3	10-5	12-9	14-9	5-0	7-4	9-4	11-5	13-2

(continued)

TABLE R802.5.1(5)-continued
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Ground snow load $=30 \mathrm{psf}$, ceiling attached to rafters, $L / \Delta=240$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feet inches)	$\begin{aligned} & \text { (feet- } \\ & \text { inches) } \end{aligned}$	(feet inches)							
19.2	Southern pine	SS	7-8	12-0	15-10	20-2	24-7	7-8	12-0	15-10	20-0	23-7
	Southern pine	\#1	7-4	11-7	15-1	17-7	20-11	7-1	10-7	13-5	15-9	18-8
	Southern pine	\#2	6-10	10-2	12-11	15-4	18-1	6-1	9-2	11-7	13-9	16-2
	Southern pine	\#3	5-3	7-9	9-9	11-10	14-0	4-8	6-11	8-9	10-7	12-6
	Spruce-pine-fir	SS	7-2	11-4	14-11	19-0	23-1	7-2	11-4	14-9	18-0	20-11
	Spruce-pine-fir	\#1	7-0	10-11	13-9	16-10	19-6	6-8	9-9	12-4	15-1	17-6
	Spruce-pine-fir	\#2	7-0	10-11	13-9	16-10	19-6	6-8	9-9	12-4	15-1	17-6
	Spruce-pine-fir	\#3	5-7	8-3	10-5	12-9	14-9	5-0	7-4	9-4	11-5	13-2
24	Douglas fir-larch	SS	7-3	11-4	15-0	19-1	22-10	7-3	11-4	14-5	17-8	20-5
	Douglas fir-larch	\#1	7-0	10-5	13-2	16-1	18-8	6-4	9-4	11-9	14-5	16-8
	Douglas fir-larch	\#2	6-9	9-10	12-6	15-3	17-9	6-0	8-10	11-2	13-8	15-10
	Douglas fir-larch	\#3	5-2	7-7	9-7	11-8	13-6	4-7	6-9	8-7	10-5	12-1
	Hem-fir	SS	6-10	10-9	14-2	18-0	21-11	6-10	10-9	13-11	17-0	19-9
	Hem-fir	\#1	6-8	10-3	13-0	15-11	18-5	6-3	9-2	11-8	14-3	16-6
	Hem-fir	\#2	6-4	9-7	12-2	14-10	17-3	5-10	8-7	10-10	13-3	15-5
	Hem-fir	\#3	5-0	7-4	9-4	11-5	13-2	4-6	6-7	8-4	10-2	11-10
	Southern pine	SS	7-1	11-2	14-8	18-9	22-10	7-1	11-2	14-8	17-11	21-2
	Southern pine	\#1	6-10	10-7	13-5	15-9	18-8	6-4	* 9-6	12-0	14-1	16-8
	Southern pine	\#2	6-1	9-2	11-7	13-9	16-2	5-5	8-2	10-4	12-3	14-6
	Southern pine	\#3	4-8	6-11	8-9	10-7	12-6	4-2	6-2	7-10	9-6	11-2
	Spruce-pine-fir	SS	6-8	10-6	13-10	17-8	20-11	6-8	10-5	13-2	16-1	18-8
	Spruce-pine-fir	\#1	6-6	9-9	12-4	15-1	17-6	5-11	8-8	11-0	13-6	15-7
	Spruce-pine-fir	\#2	6-6	9-9	12-4	15-1	17-6	5-11	8-8	11-0	13-6	15-7
	Spruce-pine-fir	\#3	5-0	7-4	9-4	11-5	13-2	4-6	6-7	8-4	10-2	11-10

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. Where ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the following factors:

H_{c} / H_{R}	Rafter Span Adjustment Factor
$1 / 3$	0.67
$1 / 4$	0.76
$1 / 5$	0.83
$1 / 6$	0.90
$1 / 7.5$ or less	1.00

where:
$H_{C}=$ Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
$H_{R}=$ Height of roof ridge measured vertically above the top of the rafter support walls.
b. Span exceeds 26 feet in length.

TABLE R802.5.1(6)
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Ground snow load $=\mathbf{5 0}$ psf, ceiling attached to rafters, $L / \Delta=240$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feetinches)	$\begin{aligned} & \text { (feet- } \\ & \text { inches) } \end{aligned}$	$\begin{aligned} & \text { (feet- } \\ & \text { inches) } \end{aligned}$	(feetinches)	$\begin{aligned} & \text { (feet- } \\ & \text { inches) } \end{aligned}$	(feetinches)	$\begin{aligned} & \text { (feet- } \\ & \text { inches) } \end{aligned}$	(feetinches)	(feetinches)	$\begin{aligned} & \text { (feet- } \\ & \text { inches) } \end{aligned}$
12	Douglas fir-larch	SS	7-8	12-1	15-11	20-3	24-8	7-8	12-1	15-11	20-3	24-5
	Douglas fir-larch	\#1	7-5	11-7	15-3	18-7	21-7	7-5	11-2	14-1	17-3	20-0
	Douglas fir-larch	\#2	7-3	11-5	14-5	17-8	20-5	7-3	10-7	13-4	16-4	18-11
	Douglas fir-larch	\#3	6-0	8-9	11-0	13-6	15-7	5-6	8-1	10-3	12-6	14-6
	Hem-fir	SS	7-3	11-5	15-0	19-2	23-4	7-3	11-5	15-0	19-2	23-4
	Hem-fir	\#1	7-1	11-2	14-8	18-4	21-3	7-1	11-0	13-11	17-0	19-9
	Hem-fir	\#2	6-9	10-8	14-0	17-2	19-11	6-9	10-3	13-0	15-10	18-5
	Hem-fir	\#3	5-10	8-6	10-9	13-2	15-3	5-5	7-10	10-0	12-2	14-1
	Southern pine	SS	7-6	11-10	15-7	19-11	24-3	7-6	11-10	15-7	19-11	24-3
	Southern pine	\#1	7-3	11-5	15-0	18-2	21-7	7-3	11-4	14-5	16-10	20-0
	Southern pine	\#2	6-11	10-6	13-4	15-10	18-8	6-6	9-9	12-4	14-8	17-3
	Southern pine	\#3	5-5	8-0	10-1	12-3	14-6	5-0	7-5	9-4	11-4	13-5
	Spruce-pine-fir	SS	7-1	11-2	14-8	18-9	22-10	7-1	11-2	14-8	18-9	22-4
	Spruce-pine-fir	\#1	6-11	10-11	14-3	17-5	20-2	6-11	10-5	13-2	16-1	18-8
	Spruce-pine-fir	\#2	6-11	10-11	14-3	17-5	20-2	6-11	10-5	13-2	16-1	18-8
	Spruce-pine-fir	\#3	5-10	8-6	10-9	13-2	15-3	5-5	7-10	10-0	12-2	14-1
16	Douglas fir-larch	SS	7-0	11-0	14-5	18-5	22-5	7-0	11-0	14-5	18-3	21-2
	Douglas fir-larch	\#1	6-9	10-5	13-2	16-1	18-8	6-7	- 9-8	12-2	14-11	17-3
	Douglas fir-larch	\#2	6-7	9-10	12-6	15-3	17-9	6-3	9-2	11-7	14-2	16-5
	Douglas fir-larch	\#3	5-2	7-7	9-7	11-8	13-6	4-9	7-0	8-10	10-10	12-6
	Hem-fir	SS	6-7	10-4	13-8	17-5	21-2	6-7	10-4	13-8	17-5	20-5
	Hem-fir	\#1	6-5	10-2	13-0	15-11	18-5	6-5	9-6	12-1	14-9	17-1
	Hem-fir	\#2	6-2	9-7	12-2	14-10	17-3	6-1	8-11	11-3	13-9	15-11
	Hem-fir	\#3	5-0	7-4	9-4	11-5	13-2	4-8	6-10	8-8	10-6	12-3
	Southern pine	SS	6-10	10-9	14-2	18-1	22-0	6-10	10-9	14-2	18-1	21-10
	Southern pine	\#1	6-7	10-4	13-5	15-9	18-8	6-7	9-10	12-5	14-7	17-3
	Southern pine	\#2	6-1	9-2	11-7	13-9	16-2	5-8	8-5	10-9	12-9	15-0
	Southern pine	\#3	4-8	6-11	8-9	10-7	12-6	4-4	6-5	8-1	9-10	11-7
	Spruce-pine-fir	SS	6-5	10-2	13-4	17-0	20-9	6-5	10-2	13-4	16-8	19-4
	Spruce-pine-fir	\#1	6-4	9-9	12-4	15-1	17-6	6-2	9-0	11-5	13-11	16-2
	Spruce-pine-fir	\#2	6-4	9-9	12-4	15-1	17-6	6-2	9-0	11-5	13-11	16-2
	Spruce-pine-fir	\#3	5-0	7-4	9-4	11-5	13-2	4-8	6-10	8-8	10-6	12-3
19.2	Douglas fir-larch	SS	6-7	10-4	13-7	17-4	20-11	6-7	10-4	13-7	16-8	19-4
	Douglas fir-larch	\#1	6-4	9-6	12-0	14-8	17-1	6-0	8-10	11-2	13-7	15-9
	Douglas fir-larch	\#2	6-2	9-0	11-5	13-11	16-2	5-8	8-4	10-7	12-11	15-0
	Douglas fir-larch	\#3	4-8	6-11	8-9	10-8	12-4	4-4	6-4	8-1	9-10	11-5
	Hem-fir	SS	6-2	9-9	12-10	16-5	19-11	6-2	9-9	12-10	16-1	18-8
	Hem-fir	\#1	6-1	9-5	11-11	14-6	16-10	5-11	8-8	11-0	13-5	15-7
	Hem-fir	\#2	5-9	8-9	11-1	13-7	15-9	5-7	8-1	10-3	12-7	14-7
	Hem-fir	\#3	4-7	6-9	8-6	10-5	12-1	4-3	6-3	7-11	9-7	11-2

(continued)

TABLE R802.5.1(6)-continued
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Ground snow load $=\mathbf{5 0}$ psf, ceiling attached to rafters, $L / \Delta=\mathbf{2 4 0}$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feetinches)	(feetinches)	(feetinches)	(feetinches)	(feetinches)	(feetinches)	$\begin{aligned} & \text { (feet- } \\ & \text { inches) } \end{aligned}$	(feet- inches)	(feetinches)	(feetinches)
19.2	Southern pine	SS	6-5	10-2	13-4	17-0	20-9	6-5	10-2	13-4	16-11	20-0
	Southern pine	\#1	6-2	9-8	12-3	14-4	17-1	6-0	9-0	11-4	13-4	15-9
	Southern pine	\#2	5-7	8-4	10-7	12-6	14-9	5-2	7-9	9-9	11-7	13-8
	Southern pine	\#3	4-3	6-4	8-0	9-8	11-5	4-0	5-10	7-4	8-11	10-7
	Spruce-pine-fir	SS	6-1	9-6	12-7	16-0	19-1	6-1	9-6	12-5	15-3	17-8
	Spruce-pine-fir	\#1	5-11	8-11	11-3	13-9	15-11	5-7	8-3	10-5	12-9	14-9
	Spruce-pine-fir	\#2	5-11	8-11	11-3	13-9	15-11	5-7	8-3	10-5	12-9	14-9
	Spruce-pine-fir	\#3	4-7	6-9	8-6	10-5	12-1	4-3	6-3	7-11	9-7	11-2
24	Douglas fir-larch	SS	6-1	9-7	12-7	16-1	18-8	6-1	9-7	12-2	14-11	17-3
	Douglas fir-larch	\#1	5-10	8-6	10-9	13-2	15-3	5-5	7-10	10-0	12-2	14-1
	Douglas fir-larch	\#2	5-6	8-1	10-3	12-6	14-6	5-1	7-6	9-5	11-7	13-5
	Douglas fir-larch	\#3	4-3	6-2	7-10	9-6	11-1	3-11	5-8	7-3	8-10	10-3
	Hem-fir	SS	5-9	9-1	11-11	15-2	18-0	5-9	9-1	11-9	14-5	15-11
	Hem-fir	\#1	5-8	8-5	10-8	13-0	15-1	5-4	7-9	9-10	12-0	13-11
	Hem-fir	\#2	5-4	7-10	9-11	12-1	14-1	4-11	7-3	9-2	11-3	13-0
	Hem-fir	\#3	4-1	6-0	7-7	9-4	10-9	3-10	5-7	7-1	8-7	10-0
	Southern pine	SS	6-0	9-5	12-5	15-10	19-3	6-0	9-5	12-5	15-2	17-10
	Southern pine	'\#1	5-9	8-8	11-0	12-10	15-3	5-5	8-0	'10-2	11-11	14-1
	Southern pine	\#2	5-0	7-5	9-5	11-3	13-2	4-7	6-11	8-9	10-5	12-3
	Southern pine	\#3	3-10	5-8	7-1	8-8	10-3	3-6	5-3	6-7	8-0	9-6
	Spruce-pine-fir	SS	5-8	8-10	11-8	14-8	17-1	5-8	8-10	11-2	13-7	15-9
	Spruce-pine-fir	\#1	5-5	7-11	10-1	12-4	14-3	5-0	7-4	9-4	11-5	13-2
	Spruce-pine-fir	\#2	5-5	7-11	10-1	12-4	14-3	5-0	7-4	9-4	11-5	13-2
	Spruce-pine-fir	\#3	4-1	6-0	7-7	9-4	10-9	3-10	5-7	7-1	8-7	10-0

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. Where ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the following factors:

$\boldsymbol{H}_{C} / \boldsymbol{H}_{R}$	Rafter Span Adjustment Factor
$1 / 3$	0.67
$1 / 4$	0.76
$1 / 5$	0.83
$1 / 6$	0.90
$1 / 7.5$ or less	1.00

where:
$H_{C}=$ Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
$H_{R}=$ Height of roof ridge measured vertically above the top of the rafter support walls

TABLE R802.5.1(7)
RAFTER SPANS FOR 70 PSF GROUND SNOW LOAD
(Ceiling not attached to rafters, $\mathrm{L} / \Delta=180$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum Rafter Spans ${ }^{\text {a }}$									
			$\begin{aligned} & \text { (feet- } \\ & \text { inches) } \end{aligned}$	$\begin{gathered} \text { (feet- } \\ \text { inches) } \end{gathered}$	(feet- inches)	$\begin{aligned} & \text { (feet- } \\ & \text { inches) } \end{aligned}$	(feetinches)	$\begin{gathered} \text { (feet- } \\ \text { inches) } \end{gathered}$	(feetinches)	$\begin{aligned} & \text { (feet- } \\ & \text { inches) } \end{aligned}$	$\begin{gathered} \text { (feet- } \\ \text { inches) } \end{gathered}$	(feetinches)
12	Douglas fir-larch	SS	7-7	11-10	15-8	19-9	22-10	7-7	11-10	15-3	18-7	21-7
	Douglas fir-larch	\#1	7-1	10-5	13-2	16-1	18-8	6-8	9-10	12-5	15-2	17-7
	Douglas fir-larch	\#2	6-9	9-10	12-6	15-3	17-9	6-4	9-4	11-9	14-5	16-8
	Douglas fir-larch	\#3	5-2	7-7	9-7	11-8	13-6	4-10	7-1	9-0	11-0	12-9
	Hem-fir	SS	7-2	11-3	14-9	18-10	22-1	7-2	11-3	14-8	18-0	20-10
	Hem-fir	\#1	7-0	10-3	13-0	15-11	18-5	6-7	9-8	12-3	15-0	17-5
	Hem-fir	\#2	6-7	9-7	12-2	14-10	17-3	6-2	9-1	11-5	14-0	16-3
	Hem-fir	\#3	5-0	7-4	9-4	11-5	13-2	4-9	6-11	8-9	10-9	12-5
	Southern pine	SS	7-5	11-8	15-4	19-7	23-7	7-5	11-8	15-4	18-10	22-3
	Southern pine	\#1	7-1	10-7	13-5	15-9	18-8	6-9	10-0	12-8	14-10	17-7
	Southern pine	\#2	6-1	9-2	11-7	13-9	16-2	5-9	8-7	10-11	12-11	15-3
	Southern pine	\#3	4-8	6-11	8-9	10-7	12-6	4-5	6-6	8-3	10-0	11-10
	Spruce-pine-fir	SS	7-0	11-0	14-6	18-0	20-11	7-0	11-0	13-11	17-0	19-8
	Spruce-pine-fir	\#1	6-8	9-9	12-4	15-1	17-6	6-3	9-2	11-8	14-2	16-6
	Spruce-pine-fir	\#2	6-8	9-9	12-4	15-1	17-6	6-3	9-2	11-8	14-2	16-6
	Spruce-pine-fir	\#3	5-0	7-4	9-4	11-5	13-2	4-9	6-11	8-9	10-9	12-5
16	Douglas fir-larch	SS	6-10	10-9	14-0	17-1	19-10	6-10	10-5	13-2	16-1	18-8
	Douglas fir-larch	'\#1	6-2	9-0	11-5	13-11	16-2	5-10	8-6	'10-9	13-2	15-3
	Douglas fir-larch	\#2	5-10	8-7	10-10	13-3	15-4	5-6	8-1	10-3	12-6	14-6
	Douglas fir-larch	\#3	4-6	6-6	8-3	10-1	11-9	4-3	6-2	7-10	9-6	11-1
	Hem-fir	SS	6-6	10-2	13-5	16-6	19-2	6-6	10-1	12-9	15-7	18-0
	Hem-fir	\#1	6-1	8-11	11-3	13-9	16-0	5-9	8-5	10-8	13-0	15-1
	Hem-fir	\#2	5-8	8-4	10-6	12-10	14-11	5-4	7-10	9-11	12-1	14-1
	Hem-fir	\#3	4-4	6-4	8-1	9-10	11-5	4-1	6-0	7-7	9-4	10-9
	Southern pine	SS	6-9	10-7	14-0	17-4	20-5	6-9	10-7	13-9	16-4	19-3
	Southern pine	\#1	6-2	9-2	11-8	13-8	16-2	5-10	8-8	11-0	12-10	15-3
	Southern pine	\#2	5-3	7-11	10-0	11-11	14-0	5-0	7-5	9-5	11-3	13-2
	Southern pine	\#3	4-1	6-0	7-7	9-2	10-10	3-10	5-8	7-1	8-8	10-3
	Spruce-pine-fir	SS	6-4	10-0	12-9	15-7	18-1	6-4	9-6	12-0	14-8	17-1
	Spruce-pine-fir	\#1	5-9	8-5	10-8	13-1	15-2	5-5	7-11	10-1	12-4	14-3
	Spruce-pine-fir	\#2	5-9	8-5	10-8	13-1	15-2	5-5	7-11	10-1	12-4	14-3
	Spruce-pine-fir	\#3	4-4	6-4	8-1	9-10	11-5	4-1	6-0	7-7	9-4	10-9
19.2	Douglas fir-larch	SS	6-6	10-1	12-9	15-7	18-1	6-6	9-6	12-0	14-8	17-1
	Douglas fir-larch	\#1	5-7	8-3	10-5	12-9	14-9	5-4	7-9	9-10	12-0	13-11
	Douglas fir-larch	\#2	5-4	7-10	9-11	12-1	14-0	5-0	7-4	9-4	11-5	13-2
	Douglas fir-larch	\#3	4-1	6-0	7-7	9-3	10-8	3-10	5-7	7-1	8-8	10-1
	Hem-fir	SS	6-1	9-7	12-4	15-1	17-4	6-1	9-2	11-8	14-2	15-5
	Hem-fir	\#1	5-7	8-2	10-3	12-7	14-7	5-3	7-8	9-8	11-10	13-9
	Hem-fir	\#2	5-2	7-7	9-7	11-9	13-7	4-11	7-2	9-1	11-1	12-10
	Hem-fir	\#3	4-0	5-10	7-4	9-0	10-5	3-9	5-6	6-11	8-6	9-10

(continued)

TABLE R802.5.1(7)—continued RAFTER SPANS FOR 70 PSF GROUND SNOW LOAD (Ceiling not attached to rafters, $\mathrm{L} / \Delta=180$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum Rafter Spans ${ }^{\text {a }}$									
			(feetinches)	$\begin{gathered} \text { (feet- } \\ \text { inches) } \end{gathered}$	(feetinches)							
19.2	Southern pine	SS	6-4	10-0	13-2	15-10	18-8	6-4	9-10	12-6	14-11	17-7
	Southern pine	\#1	5-8	8-5	10-8	12-5	14-9	5-4	7-11	10-0	11-9	13-11
	Southern pine	\#2	4-10	7-3	9-2	10-10	12-9	4-6	6-10	8-8	10-3	12-1
	Southern pine	\#3	3-8	5-6	6-11	8-4	9-11	3-6	5-2	6-6	7-11	9-4
	Spruce-pine-fir	SS	6-0	9-2	11-8	14-3	16-6	5-11	8-8	11-0	13-5	15-7
	Spruce-pine-fir	\#1	5-3	7-8	9-9	11-11	13-10	5-0	7-3	9-2	11-3	13-0
	Spruce-pine-fir	\#2	5-3	7-8	9-9	11-11	13-10	5-0	7-3	9-2	11-3	13-0
	Spruce-pine-fir	\#3	4-0	5-10	7-4	9-0	10-5	3-9	5-6	6-11	8-6	9-10
24	Douglas fir-larch	SS	6-0	9-0	11-5	13-11	16-2	5-10	8-6	10-9	13-2	15-3
	Douglas fir-larch	\#1	5-0	7-4	9-4	11-5	13-2	4-9	6-11	8-9	10-9	12-5
	Douglas fir-larch	\#2	4-9	7-0	8-10	10-10	12-6	4-6	6-7	8-4	10-2	11-10
	Douglas fir-larch	\#3	3-8	5-4	6-9	8-3	9-7	3-5	5-0	6-4	7-9	9-10
	Hem-fir	SS	5-8	8-8	11-0	13-6	13-11	5-7	8-3	10-5	12-4	12-4
	Hem-fir	\#1	5-0	7-3	9-2	11-3	13-0	4-8	6-10	8-8	10-7	12-4
	Hem-fir	\#2	4-8	6-9	8-7	10-6	12-2	4-4	6-5	8-1	9-11	11-6
	Hem-fir	\#3	3-7	5-2	6-7	8-1	9-4	3-4	4-11	6-3	7-7	8-10
	Southern pine	SS	5-11	9-3	11-11	14-2	16-8	5-11	8-10	11-2	13-4	15-9
	Southern pine	\#1	5-0	7-6	9-6	11-1	13-2	4-9	7-1	9-0	10-6	12-5
	Southern pine	\#2	4-4	6-5	8-2	9-9	11-5	4-1	6-1	7-9	9-2	10-9
	Southern pine	\#3	3-4	4-11	6-2	7-6	8-10	3-1	4-7	5-10	7-1	8-4
	Spruce-pine-fir	SS	5-6	8-3	10-5	12-9	14-9	5-4	7-9	9-10	12-0	12-11
	Spruce-pine-fir	\#1	4-8	6-11	8-9	10-8	12-4	4-5	6-6	8-3	10-0	11-8
	Spruce-pine-fir	\#2	4-8	6-11	8-9	10-8	12-4	4-5	6-6	8-3	10-0	11-8
	Spruce-pine-fir	\#3	3-7	5-2	6-7	8-1	9-4	3-4	4-11	6-3	7-7	8-10

Check sources for availability of lumber in lengths greater than 20 feet
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. Where ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the following factors:

$H_{C} H_{R}$	Rafter Span Adjustment Factor
$1 / 3$	0.67
$1 / 4$	0.76
$1 / 5$	0.83
$1 / 6$	0.90
$1 / 7.5$ or less	1.00

where:
$H_{C}=$ Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
$H_{R}=$ Height of roof ridge measured vertically above the top of the rafter support walls.

TABLE R802.5.1(8)
RAFTER SPANS FOR 70 PSF GROUND SNOW LOAD
(Ceiling attached to rafters, $\mathrm{L} / \Delta=240$)

(continued)

TABLE R802.5.1(8)-continued RAFTER SPANS FOR 70 PSF GROUND SNOW LOAD (Ceiling attached to rafters, $L / \Delta=240$)

RAFTER SPACING (inches)	SPECIES AND GRADE		DEAD LOAD $=10 \mathrm{psf}$					DEAD LOAD $=20 \mathrm{psf}$				
			2×4	2×6	2×8	2×10	2×12	2×4	2×6	2×8	2×10	2×12
			Maximum rafter spans ${ }^{\text {a }}$									
			(feet inches)	(feet inches)	(feet inches)	(feet inches)	(feet- inches)	(feet inches)				
19.2	Southern pine	SS	5-9	9-1	11-11	15-3	18-6	5-9	9-1	11-11	14-11	17-7
	Southern pine	\#1	5-6	8-5	10-8	12-5	14-9	5-4	7-11	10-0	11-9	13-11
	Southern pine	\#2	4-10	7-3	9-2	10-10	12-9	4-6	6-10	8-8	10-3	12-1
	Southern pine	\#3	3-8	5-6	6-11	8-4	9-11	3-6	5-2	6-6	7-11	9-4
	Spruce-pine-fir	SS	5-5	8-6	11-3	14-3	16-6	5-5	8-6	11-0	13-5	15-7
	Spruce-pine-fir	\#1	5-3	7-8	9-9	11-11	13-10	5-0	7-3	9-2	11-3	13-0
	Spruce-pine-fir	\#2	5-3	7-8	9-9	11-11	13-10	5-0	7-3	9-2	11-3	13-0
	Spruce-pine-fir	\#3	4-0	5-10	7-4	9-0	10-5	3-9	5-6	6-11	8-6	9-10
24	Douglas fir-larch	SS	5-5	8-7	11-3	13-11	16-2	5-5	8-6	10-9	13-2	15-3
	Douglas fir-larch	\#1	5-0	7-4	9-4	11-5	13-2	4-9	6-11	8-9	10-9	12-5
	Douglas fir-larch	\#2	4-9	7-0	8-10	10-10	12-6	4-6	6-7	8-4	10-2	11-10
	Douglas fir-larch	\#3	3-8	5-4	6-9	8-3	9-7	3-5	5-0	6-4	7-9	9-0
	Hem-fir	SS	5-2	8-1	10-8	13-6	13-11	5-2	8-1	10-5	12-4	12-4
	Hem-fir	\#1	5-0	7-3	9-2	11-3	13-0	4-8	6-10	8-8	10-7	12-4
	Hem-fir	\#2	4-8	6-9	8-7	10-6	12-2	4-4	6-5	8-1	9-11	11-6
	Hem-fir	\#3	3-7	5-2	6-7	8-1	9-4	3-4	4-11	6-3	7-7	8-10
	Southern pine	SS	5-4	8-5	11-1	14-2	16-8	5-4	8-5	11-1	13-4	15-9
	Southern pine	\#1	5-0	$7-6^{\circ}$	9-6	11-1	13-2	4-9	7-1	9-0	10-6	12-5
	Southern pine	\#2	4-4	6-5	8-2	9-9	11-5	4-1	6-1	7-9	9-2	10-9
	Southern pine	\#3	3-4	4-11	6-2	7-6	8-10	3-1	4-7	5-10	7-1	8-4
	Spruce-pine-fir	SS	5-0	7-11	10-5	12-9	14-9	5-0	7-9	9-10	12-0	12-11
	Spruce-pine-fir	\#1	4-8	6-11	8-9	10-8	12-4	4-5	6-6	8-3	10-0	11-8
	Spruce-pine-fir	\#2	4-8	6-11	8-9	10-8	12-4	4-5	6-6	8-3	10-0	11-8
	Spruce-pine-fir	\#3	3-7	5-2	6-7	8-1	9-4	3-4	4-11	6-3	7-7	8-10

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. Where ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the following factors:

H_{c} / H_{R}	Rafter Span Adjustment Factor
$1 / 3$	0.67
$1 / 4$	0.76
$1 / 5$	0.83
$1 / 6$	0.90
$1 / 7.5$ or less	1.00

where:
$H_{C}=$ Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
$H_{R}=$ Height of roof ridge measured vertically above the top of the rafter support walls.

TABLE R802.5.1(9)
RAFTER/CEILING JOIST HEEL JOINT CONNECTIONS ${ }^{\text {a, b, c, d. e, f, h }}$

RAFTER SLOPE	RAFTER SPACING (inches)	GROUND SNOW LOAD (psf)															
		20^{9}				30				50				70			
		Roof span (feet)															
		12	20	28	36	12	20	28	36	12	20	28	36	12	20	28	36
		Required number of 16d common nails ${ }^{\text {a }}$, $\mathrm{b}^{\text {a }}$ per heel joint splices ${ }^{\text {c, di, e, }}$,															
3:12	12	4	6	8	10	4	6	8	11	5	8	12	15	6	11	15	20
	16	5	8	10	13	5	8	11	14	6	11	15	20	8	14	20	26
	24	7	11	15	19	7	11	16	21	9	16	23	30	12	21	30	39
4:12	12	3	5	6	8	3	5	6	8	4	6	9	11	5	8	12	15
	16	4	6	8	10	4	6	8	11	5	8	12	15	6	11	15	20
	24	5	8	12	15	5	9	12	16	7	12	17	22	9	16	23	29
5:12	12	3	4	5	6	3	4	5	7	3	5	7	9	4	7	9	12
	16	3	5	6	8	3	5	7	9	4	7	9	12	5	9	12	16
	24	4	7	9	12	4	7	10	13	6	10	14	18	7	13	18	23
7:12	12	3	4	4	5	3	3	4	5	3	4	5	7	3	5	7	9
	16	3	4	5	6	3	4	5	6	3	5	7	9	4	6	9	11
	24	3	5	7	9	3	5	7	9	4	7	10	13	5	9	13	17
9:12	12	3	3	4	4	3	3	3	4	3	3	4	5	3	4	5	7
	16	3	4	4	5	3	3	4	5	3	4	5	7	3	5	7	9
	24	3	4	6	7	3	4	6	7	3	6	8	10	4	7	10	13
12:12	12	3	3	3	3	3	3	3	3	3	3	3	4	3	3	4	5
	16	3	3	4	4	3°	3	3	4	3	3	4	5	3	4	5	$\cdot 7$
	24	3	4	4	5	3	3	4	6	3	4	6	8	3	6	8	10

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. 40 d box nails shall be permitted to be substituted for 16 d common nails.
b. Nailing requirements shall be permitted to be reduced 25 percent if nails are clinched.
c. Heel joint connections are not required where the ridge is supported by a load-bearing wall, header or ridge beam.
d. Where intermediate support of the rafter is provided by vertical struts or purlins to a load-bearing wall, the tabulated heel joint connection requirements shall be permitted to be reduced proportionally to the reduction in span.
e. Equivalent nailing patterns are required for ceiling joist to ceiling joist lap splices.
f. Where rafter ties are substituted for ceiling joists, the heel joint connection requirement shall be taken as the tabulated heel joint connection requirement for two-thirds of the actual rafter slope.
g. Applies to roof live load of 20 psf or less.
h. Tabulated heel joint connection requirements assume that ceiling joists or rafter ties are located at the bottom of the attic space. Where ceiling joists or rafter ties are located higher in the attic, heel joint connection requirements shall be increased by the following factors:

$H_{C} H_{R}$	Heel Joint Connection Adjustment Factor
$1 / 3$	1.5
$1 / 4$	1.33
$1 / 5$	1.25
$1 / 6$	1.2
$1 / 10$ or less	1.11

where:
$H_{C}=$ Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
$H_{R}=$ Height of roof ridge measured vertically above the top of the rafter support walls.

